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Reductive Arylation of Amides via a Nickel-Catalyzed Suzuki–
Miyaura Coupling and Transfer Hydrogenation Cascade 
Timothy B. Boit,† Milauni M. Mehta,† Junyong Kim, Emma L. Baker, and Neil K. Garg* 
Abstract: We report a means to achieve the addition of two 
disparate nucleophiles to the amide carbonyl carbon in a single 
operational step. Our method takes advantage of non-precious metal 
catalysis and allows for the facile conversion of amides to chiral 
alcohols via a one-pot Suzuki–Miyaura cross-coupling / transfer 
hydrogenation process. This study is anticipated to promote the 
development of new transformations that allow for the conversion of 
carboxylic acid derivatives to functional groups bearing stereogenic 
centers via cascade processes. 

The synthetic manipulation of carboxylic acid derivatives 
has become central to organic chemistry after more than a 
century of methodological development.[1] Though the field has a 
rich history, strategies for nucleophilic addition to carboxylic acid 
derivatives may be largely characterized by two primary 
mechanisms (Figure 1a). The first involves an addition-
elimination sequence to produce carbonyl derivatives via a 
tetrahedral intermediate.[2] Notably, this traditional strategy has 
limitations in the context of organometallic nucleophiles, as the 
ketone products resulting from initial acyl substitution are 
susceptible to further nucleophilic attack to give achiral alcohol 
products. Specialized acyl derivatives such as N-methyl-N-
methoxy amides, or “Weinreb amides,” are often required to 
avoid such undesired reactivity and necessitate two-step 
protocols.[2, 3 ] A complementary approach employs transition 
metal catalysis,[ 4 ] where mild substrate activation affords an 
acyl-metal intermediate and allows for cross-coupling with a 
variety of nucleophiles.[4a, 5 ] This alternative pathway 
differentiates the reactivity of the substrate from the product 
carbonyl to overcome the selectivity challenges mentioned 
above. An exciting opportunity offered by the latter strategy is 
the addition of a second, different nucleophile to the 
intermediate resulting from the initial cross-coupling reaction to 
generate chiral products. Cascade reactions of this type would 
provide efficient access to important chiral products in racemic 
or enantioenriched form from achiral starting materials.[6] 

Despite the widely recognized importance of cross-

couplings, methods to leverage this platform for the addition of 
disparate nucleophiles to carboxylic acid derivatives remain 
underexplored.[7] We envisioned that amides could provide a 
viable entry to address this challenge, given their recent 
popularization as cross-coupling handles.[4j–o,8 ,9 ] Amides have 
been shown to undergo a variety of couplings through the 
intermediacy of acyl-metal species using either non-precious or 
precious metal catalysis (e.g., Ni or Pd). Additionally, we viewed 
them as ideal substrates for one-pot cascade reactions, as their 
stability under non-metal catalyzed conditions could allow for the 
orchestration of orthogonal bond-forming events.[10] Dixon has 
reported an elegant intramolecular reductive cyclization of a 
tertiary lactam substrate mediated by Vaska’s Ir complex,[ 11 ] 
however, no examples exist for the intermolecular addition of 
two distinct nucleophiles to amides using catalysis in a single 
operation.[ 12 , 13 ] Indeed, a reductive alkylation of aryl pyridyl 
esters reported by Chen and coworkers in 2019 represents the 
only known example of a carboxylic acid derivative undergoing 
direct catalytic addition of two nucleophiles through a cross-
coupling approach (Figure 1b).[ 14 ] Though mechanistically 
distinct and not involving acyl metal species, two additional 
relevant methodologies should be highlighted. Buchwald and 
coworkers have reported a copper-catalyzed reductive alkylation 
of symmetric anhydrides to afford enantioenriched secondary 
alcohols,[15] and more recently the Hoveyda group reported a 
copper-catalyzed asymmetric reductive allylation of nitriles to 
access enantioenriched homoallylic amines (Figure 1b).[ 16 ] 
Together, these examples illustrate some of the potential 
advantages of cascade reactions that add disparate 
nucleophiles to a single reactive center of an achiral substrate 
and uncover synergistic reactivity beyond the capabilities of one 
reaction manifold.[17]  
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Figure 1. (a) Common reaction pathways for nucleophilic additions 
to carboxylic acid derivatives. (b) Direct catalytic approaches to 
chiral amines or alcohols from carboxylic acid derivatives. 

In this manuscript, we describe a synthetic method for 
achieving the addition of two different nucleophiles to a 
carboxylic acid derivative using nickel catalysis.[18] The overall 
transformation relies on a Suzuki–Miyaura cross-coupling / 
transfer hydrogenation cascade reaction of amide starting 
materials to form a C–C and C–H bond,[19,20] consecutively, and 
ultimately furnish alcohol products (Figure 2).[ 21 ] The results 
presented herein not only reinforce the notion that amides are 
versatile building blocks for transition-metal catalyzed reactions, 
but also validate their utility as synthons for directly generating 
sp3 carbon centers from the amide carbonyl. 

 

Figure 2. Overview of current study involving the conversion of 
aliphatic amides to alkyl–aryl alcohols via a Suzuki–Miyaura coupling 
/ transfer hydrogenation cascade. 

We initiated our study by examining the Ni-catalyzed 
Suzuki–Miyaura coupling and in situ reduction of 
dihydrocinnamic acid-derived amide 1 as shown in Figure 3.[19b]  
In the absence of a reducing agent, the Suzuki–Miyaura 
coupling with boronate 5 delivered ketone 3 in nearly 
quantitative yield (entry 1).[22,23,,24] With the aim of developing the 
reductive variant, we questioned whether the use of a secondary 
alcohol reductant could effect the in situ transfer hydrogenation 
of ketone 3 to deliver alcohol 4. In this regard, we attempted the 
use of i-PrOH as solvent, reminiscent of common Meerwein–
Ponndorf–Verley (MPV) reduction conditions.[25 ,26] Unfortunately, 
this change resulted in low yields of 4 (entries 2 and 3).[27] By 
shifting to the use of i-PrOH as an additive while using toluene 
as solvent, we obtained the desired product 4 in a slightly 
improved yield of 32%, with 18% of ketone 3 remaining (entry 4). 
Given our lab’s recent success in using 1-4-
(dimethylamino)phenyl)-1-ethanol (DMPE, 7) in base-catalyzed 
MPV reductions,[28] we also tested this benzylic alcohol in our 
system.[29] By simply replacing i-PrOH with 7, alcohol 4 was 
obtained in 51% yield (entry 5). Finally, switching the solvent to 
1,4-dioxane (entry 6) and using boronate 6 in place of boronate 
5 (entry 7) led to further improvements, delivering alcohol 4 in 
82% yield.[30,31,32]  

It is worth noting that these optimized conditions satisfy a 
challenging balance of reactivity required for the success of the 
amide to alcohol conversion. Specifically, reducing agent 7 does 
not significantly impede the nickel-catalyzed cross-coupling step, 
yet is reactive enough to efficiently reduce ketone 3. 
Furthermore, as will be shown, other carbonyl functional groups 
are tolerated by the methodology’s mild reducing conditions. 

Figure 3. Evaluation of reaction conditions for the nickel-catalyzed 
Suzuki–Miyaura coupling / transfer hydrogenation cascade of amide 
1 with phenyl boronates and reductants. Standard conditions unless 
otherwise noted: amide substrate (0.20 mmol, 1.0 equiv); phenyl 
boronate (0.50–0.80 mmol, 2.5–4.0 equiv); reductant (0.50 equiv, 
2.5 equiv); K3PO4 (0.80 mmol, 4.0 equiv); H2O (0.40 mmol, 2.0 
equiv); Ni(cod)2 (0.010–0.020 mmol, 5–10 mol%); 2 (0.020–0.040 
mmol, 10–20 mol%); solvent (1.0 M); 120 °C; 16 h in a sealed vial. 
[a] Yield determined by 1H NMR analysis using 1,3,5-
trimethoxybenzene as an external standard. 

With optimized conditions in hand, we evaluated the scope 
of the reaction with respect to the aliphatic amide[33] coupling 
partner using phenyl boronate 6, which afforded a range of 
alkyl–aryl alcohol products (Figure 4). Beginning with the parent 
dihydrocinnamic acid-derived amide substrate used in 
optimization studies (i.e., 1), the reductive arylation furnished 
alcohol 4 in 76% isolated yield. Additionally, the use of an 
unbranched amide derived from decanoic acid provided alcohol 
8 in 82% yield. Carrying out the reaction at 130 °C allowed for 
the reductive arylation of sterically encumbered substrates, as 
demonstrated by the formation of alcohol 9 in 61% yield. The 
compatibility of carbocyclic amides with boronate 6 was explored 
as well and gave alcohols 10–14 in good yields. We also 
evaluated an amide substrate bearing an epimerizable 
stereocenter α to the amide carbonyl. As shown by the formation 
of alcohol 15 from the corresponding trans amide substrate, 
minimal erosion of stereochemistry was observed.[34] Of note, 
the ester moiety was not disturbed, demonstrating both the 
preferential cleavage of the amide C–N bond over the ester C–O 
bond and the mildness of the reducing conditions. 35  The 
tolerance of the methodology toward heterocycles was also 
determined. Notably, tetrahydropyrans, pyrrolidines, and 
piperidines, all of which are valuable in medicinal chemistry,36 
could be employed as evidenced by the synthesis of alcohols 
16–20, respectively.   

With the aim of further improving the synthetic utility of the 
reductive arylation, we performed a robustness screen to assess 
the compatibility of the reaction with various functional groups 
and heterocycles (Figure 4).[37] Results indicated the tolerance of 
functional groups including tertiary alcohols, secondary anilines, 

This study: Direct conversion of amides to alcohols via a reductive arylation
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and secondary amides, as demonstrated by moderate to good 
yields of alcohol 20 and appreciable recoveries of additives 22–
24, respectively. Additionally, heterocycles such as quinoline 
(25), dibenzofuran (26), and N-methyl indole (27) were found to 
be stable under our standard reductive arylation conditions with 
minimal to no inhibition of reactivity.[ 38 ] These results 
complement those presented in the scope of the reaction and 
further demonstrate the methodology’s robustness toward 
several heteroatom-containing functional groups. 

 

Figure 4. Scope of the reductive arylation of aliphatic amides and 
boronate 6. Standard conditions unless otherwise noted: amide 
substrate (0.20 mmol, 1.0 equiv); phenyl boronate 6 (0.80 mmol, 4.0 
equiv); 7 (0.50 mmol, 2.5 equiv); K3PO4 (0.80 mmol, 4.0 equiv); H2O 
(0.40 mmol, 2.0 equiv); Ni(cod)2 (0.020 mmol, 10 mol%); 2 (0.040 
mmol, 20 mol%); solvent (1.0 M); 120 °C; 16 h. Unless otherwise 
noted, yields reflect the average of two isolation experiments. [a] 
Yield determined by 1H NMR analysis using 1,3,5-
trimethoxybenzene as an external standard. [b] Reaction ran at 
130 °C. 

The scope of the aryl boronate component was also 
examined by coupling pinacol boronates with various amides 
(Figure 5).[31,39] Methyl substitution at the ortho, meta, or para 
positions of the aryl boronate was tolerated, as demonstrated by 

the formation of alcohols 28–30 in synthetically useful yields. We 
also evaluated aryl boronic ester nucleophiles bearing either a 
trimethylsilyl or trifluoromethyl group, which furnished alcohols 
31 and 32, respectively, in good yields. Additionally, a naphthyl 
boronate ester underwent the reductive arylation to afford 
alcohol 33 in 58% yield. We also tested several boronates that 
possess functional groups that have been demonstrated to be 
reactive to nickel catalysis. To our delight, an aryl ester,[35] an 
ether,[40] and a dimethyl amine were tolerated,[41] thus giving rise 
to alcohols 34–36, respectively. Furthermore, a boronic ester 
containing a morpholinopyridine motif was employed to furnish 
alcohol 37, showing the reaction’s tolerance of this heteroatom-
rich unit.[42]  

 
Figure 5. Scope of the reductive arylation of aliphatic amides and 
aryl boronates. Standard conditions unless otherwise noted: amide 
substrate (0.20 mmol, 1.0 equiv); aryl boronate (0.80–1.2 mmol, 4.0–
6.0 equiv); 7 (0.50 mmol, 2.5 equiv); K3PO4 (0.80 mmol, 4.0 equiv); 
H2O (0.40 mmol, 2.0 equiv); Ni(cod)2 (0.020–0.040 mmol, 10–20 
mol%); 2 (0.040–0.080 mmol, 20–40 mol%); solvent (1.0 M); 120 °C; 
16–24 h. Unless otherwise noted, yields reflect the average of two 
isolation experiments. [a] Yield determined by 1H NMR analysis 
using 1,3,5-trimethoxybenzene as an external standard.  

The utility of this methodology was evaluated in the 
synthesis of known intermediates toward two bioactive 
compounds (Figure 6). In the first example (Figure 6a), amide 38 
underwent reductive arylation with boronate 39, despite the 
notable electron deficiency of this nucleophile. This delivered 
alcohol 40, a precursor to a known γ-secretase modulator.[43] We 
also targeted the interception of a known route to fluoxetine,[44] 
the active ingredient in the blockbuster drug Prozac®. Toward 
this end, amide 42, derived from the corresponding 
commercially available carboxylic acid, was coupled with 
boronate 6. This transformation furnished alcohol 43 in 69% 
yield, providing facile access to a known intermediate in the 
synthesis of 44 from commercially available materials.[44] These 
results not only further demonstrate the viability of leveraging a 
cross-coupling approach to add two disparate nucleophiles into 
an amide carbonyl carbon, but also showcase the practical utility 
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of this reductive arylation protocol in the synthesis of complex 
chiral molecules.  

 
Figure 6. (a) Synthesis of alcohol 40, an intermediate in the 
synthesis of γ-secretase modulator 41. (b) Synthesis of alcohol 43, 
intercepting a known synthetic route toward Prozac® (44, fluoxetine). 
See Supporting Information for details.  

In summary, we have developed the first catalytic method 
for the direct intermolecular addition of two distinct nucleophiles 
to the amide carbonyl carbon. This transformation takes 
advantage of non-precious metal catalysis and allows for the 
facile conversion of amides to chiral alcohols via a cascade 
reaction involving Suzuki–Miyaura cross-coupling and 
subsequent transfer hydrogenation. The methodology has a 
broad scope with respect to both the amide and boronate cross-
coupling partners. Additionally, it shows tolerance toward 
epimerizable stereocenters, select functional groups (i.e., 
alcohols, amines, esters, ethers, and secondary amides,) and a 
range of heterocycles. Moreover, the methodology can be used 
to access scaffolds of value to medicinal chemistry, as shown by 
the syntheses of 40 and 43. This study validates the use of a 
cross-coupling approach to construct sp3 carbon centers from 
the amide carbonyl carbon in a single operational step. We hope 
this study will prompt the development of additional processes 
that allow for the direct conversion of carboxylic acid derivatives 
to functional groups bearing stereogenic centers[45] via catalytic 
cascade processes. 
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