Organic & Biomolecular Chemistry

PAPER

Cite this: DOI: 10.1039/c3ob40441b

Synthesis and pharmacological characterization of new tetrahydrofuran based compounds as conformationally constrained histamine receptor ligands[†]

Julian Bodensteiner,^a Paul Baumeister,^b Roland Geyer,^b Armin Buschauer^{*b} and Oliver Reiser^{*a}

A series of tetrahydrofuran based compounds with a bicyclic core that provides conformational restriction were synthesized and investigated by radioligand displacement studies and functional [^{35}S]GTP γ S binding assays at the human histamine receptor (hHR) subtypes. The amines **8a** and **8b** ((1*S*,3*R*,5*S*,6*R*)-and ((1*S*,3*S*,5*S*,6*R*)-3-(1*H*-imidazol-5-yl)-2-oxabicyclo[3.1.0]hexan-6-yl)methanamine), exhibited submicromolar *K*_i values at the hH₃R with 10-fold higher affinities than their corresponding (6S)-epimers and 25- and >34-fold selectivity over the hH₄R, respectively. Both compounds act as neutral antagonists at the hH₃R with *K*_B values of 181 and 32 nM, respectively. The cyanoguanidines of the imidazole series and the oxazole analogues turned out to be inactive at all hHR subtypes.

Received 4th March 2013, Accepted 17th April 2013 DOI: 10.1039/c3ob40441b

www.rsc.org/obc

Introduction

Histamine is a biogenic amine that mediates its multiple physiological effects by the interaction with four known histamine receptor (HR) subtypes, termed H_1R , H_2R , H_3R and H_4R , all belonging to rhodopsin-like family A of G-protein-coupled receptors (GPCRs).¹

Activation of the H_1R has long been known to be associated with allergic conditions.^{1*a*,2} Antagonists of this receptor subtype (popularly referred to as antihistamines) are used as anti-allergic drugs since the 1940s.² The H_2R plays a pivotal role in gastric acid secretion.³ H_2R antagonists became blockbuster drugs for the treatment of gastric and duodenal ulcer and gastroesophagal reflux disease. The histamine H_3R is located predominantly in the central nervous system (CNS) and acts both as a presynaptic autoreceptor⁴ modulating histamine release and as an inhibitory heteroreceptor⁵ regulating the release of multiple neurotransmitters, such as acetylcholine,⁶ dopamine,⁷ noradrenaline⁸ and serotonin.⁹ H_3R antagonists are being investigated as potential drugs for therapeutic applications against a variety of CNS disorders such as Alzheimer's disease, attention-deficit/hyperactivity disorder (ADHD), epilepsy, migraine, narcolepsy, obesity, schizophrenia and depression.¹⁰

Recently, the H_3R antagonist pitolisant (tiprolisant) has been introduced as an orphan drug for the treatment of narcolepsy.¹¹ In the years 2000 and 2001, the H_4R was identified and cloned independently by several research groups.¹² The H_4R is mainly expressed in blood forming organs and immunocytes such as mast cells, basophils, eosinophils, monocytes, T-lymphocytes and dendritic cells.¹³ It is considered as a new therapeutic target for the modulation of various inflammatory and immunological processes and disorders including bronchial asthma, atopic dermatitis, allergic rhinitis, pruritus, colitis, pain, cancer, rheumatoid arthritis and multiple sclerosis.¹⁴

Due to the significant sequence homology of the H₄R with the H₃R (about 40% overall sequence identity and about 60% within the transmembrane domains),¹² many of the reported H₃R agonists and antagonists showed considerable H₄R activity as well.¹⁵ However, the development of more selective ligands remains indispensable in order to further elucidate the (patho-) physiological roles of H_3R and H_4R , which might offer new opportunities for the therapy of several diseases. Since endogenous ligands such as histamine possess flexible structures owing to rotations around single bonds, a reasonable concept to improve potency and subtype selectivity is to restrict the conformational flexibility.16 The affinity at the respective receptor subtypes increases if such conformationally restricted analogues superimpose the bioactive conformation of the natural ligand. In the case of membrane-bound proteins where structural information is not known precisely, this

RSCPublishing

^aInstitut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany. E-mail: oliver.reiser@chemie.uni-regensburg.de ^bInstitut für Pharmazie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany. E-mail: armin.buschauer@chemie.uni-regensburg.de; Fax: +49 941 943 4820; Tel: +49 941 943 4827; Fax: +49 941 943 4121; Tel: +49 941 943 4631

[†]Electronic supplementary information (ESI) available: ¹H and ¹³C spectra for all new synthesized compounds, HPLC data. See DOI: 10.1039/c3ob40441b

Fig. 1 Conformationally restricted histamine receptor ligands.

strategy can be extended by the variation of stereochemistry to explore the right spatial orientation and stereochemical requirements of the pharmacophoric elements in the binding pocket and to refine the models of ligand–receptor interaction.

This approach has been successfully applied for the development of selective H₃R and H₄R ligands. Fig. 1 shows some examples of histamine analogues comprising rigid carbo- and heterocyclic cores. From a series of cyclopropane-based conformationally constrained histamine analogues with diverse stereochemistry, Shuto *et al.* identified the "folded" *cis*analogue (1*S*,2*S*)-2-(2-aminoethyl)-1-(1*H*-imidazol-4-yl)cyclopropane (1, AEIC) to be the most potent agonist at the hH₃R ($K_i =$ 1.3 nM, EC₅₀ = 10 nM) which had virtually no effect on the H₄R subtype.¹⁷

Yamatodani *et al.* synthesized all imifuramine (2) stereoisomers and its corresponding cyanoguanidine analogues and examined the binding affinity and functional activity at the human H_3 and H_4 receptors by *in vitro* studies.¹⁸ Replacement of the amino group by the cyanoguanidine moiety, which is uncharged at physiological pH, resulted in a decrease in agonistic activity at the hH₃R. In contrast, the potencies and intrinsic activities increased at the hH₄R for most isomers. As a result, OUP-16 (3) was identified as the first selective H₄R agonist.

Recently, we explored rigidified cyanoguanidine-type HR ligands having a phenylene or a 1,4-cyclohexylene linker.¹⁹ While the phenylene linker yielded only very weakly active compounds at both H_3R and hH_4R , the less rigid 1,4-cyclohexylene linker gave *cis*- and *trans*-configured molecules revealing EC_{50} or K_B values \geq 110 nM at the hH_3R and hH_4R . The *cis*-configured isomers 4 preferred the hH_4R and were partial agonists, whereas the *trans*-diastereomers 5 were superior to the *cis*-isomers 4 by a factor of 10. Thus, previous results suggest that the variation of conformational constraints and stereochemical properties is a promising approach to further explore the structure–activity and structure–selectivity relation-ships of HR ligands.

As part of our efforts to develop further potent and selective H_3 and H_4 receptor ligands that may serve as pharmacological tools and unravel the interactions within the binding pockets, we herein describe the enantioselective synthesis and

Organic & Biomolecular Chemistry

Scheme 1 Retrosynthetic analysis of the target compounds.

pharmacological evaluation of potential HR ligands 6-9 containing a modified tetrahydrofuran spacer with a conformationally constrained scaffold and diverse spatial orientations (Scheme 1). The core structure consists of a fused ring system and is formed by an asymmetric cyclopropanation reaction, which gives rise to the bicyclic building block 10. The formation of the imidazole moiety represents a key step in the synthetic route and is realized by the conversion of aldehyde 11 via the TosMIC strategy. Finally, the amino group of 8 and the cyanoguanidino group of 6 are introduced by further functional group interconversions including a Mitsunobu-type Gabriel reaction. In parallel, analogues 9 and 7 with an oxazole moiety as a potential bioisostere are synthesized and pharmacologically characterized. All target compounds are accessible as both enantiomers depending on the choice of the respective chiral ligand in the asymmetric cyclopropanation step.

Results and discussion

Chemistry

In the course of synthesizing various γ -butyrolactone containing natural products²⁰ we had previously developed the asymmetric cyclopropanation of furan-2-carboxylic acid ester 12 derived from commercially available 2-furoic acid (Scheme 2).²¹ The reaction proceeded with ethyl diazoacetate in the presence of catalytic copper(1)-isopropyl bis(oxazoline) with high enantio- and diastereoselectivity to give bicyclic compound 10. The double bond in 10 was hydrogenated accordingly using palladium on charcoal in EtOAc.22 The hydrogenation proceeds via syn-addition exclusively from the less hindered convex face of the bicyclic framework to form 13 as a single stereoisomer after recrystallization. A directed thus highly chemoselective reduction of the methyl ester to alcohol 14, being assisted by the adjacent furan ring oxygen, was followed by a Dess-Martin oxidation to give aldehyde 15. Subsequent base-induced [3 + 2]cycloaddition with p-toluenesulfonylmethyl isocyanide (TosMIC) afforded tosyloxazoline 16 as a mixture of diastereomers.²³ The conversion to the corresponding imidazole 17 by treatment with ammonia according to Horne et al. turned out to be not feasible.²⁴ Also several

Scheme 2 Reagents and conditions: (a) ref. 21; (b) ref. 22; (c) LAH, THF, 0 °C, 45 min, 87%; (d) Dess-Martin periodinane, DCM, rt, 1 h, 88%; (e) TosMIC, NaCN, EtOH, rt, 1 h, 70%; R = OEt, OMe, NH₂.

other TosMIC based methods²⁵ starting from aldehyde **15** were not successful. Any unexpected ring-opening reaction was ruled out by different test reactions. However, it could not be totally excluded that the ester moiety was interfering with the imidazole forming reaction. To circumvent the difficulties concerning the introduction of the imidazole ring we decided to displace the ethyl ester group by a benzyl ether protecting group which is inert under the prevailing basic conditions. For this reason, the primary alcohol of compound **14** was TBSprotected (Scheme 3). The ester group of intermediate **18** was reduced with LiAlH₄ and the resulting primary alcohol **19** was protected with benzyl bromide. After TBAF-mediated cleavage

Scheme 3 Reagents and conditions: (a) NEt₃, TBSCI, DMAP, DCM, rt, 18 h, 95%; (b) LAH, THF, 0 °C, 45 min, 95%; (c) NaH, BnBr, DMF, 0 °C to rt, 2 h, 85%; (d) TBAF, THF, rt, 13 h, 95%; (e) Dess–Martin periodinane, DCM, rt, 2 h, 90%; (f) TosMIC, NaCN, EtOH, rt, 2 h, 77%; (g) NH₃ saturated in MeOH, 95 °C, sealed pressure tube, 16 h, (**24a** : **24b** = 5 : 1); (h) ethyl chloroformate, pyridine, DMAP, benzene, 50 °C, 10 min, 73%; (i) Pd(OH)₂–C, cyclohexene, EtOH, reflux, 1 h, 73%; (j) PPh₃, phthalimide, DIAD, THF, rt, 18 h, 29%; (k) hydrazine hydrate, EtOH, reflux, 1 h, 77%; (l) (i) dimethyl *N*-cyanodithioiminocarbonate, MeOH, rt, 18 h; (ii) MeNH₂ in EtOH, rt, 18 h, 27%; (n) hydrazine hydrate, EtOH, reflux, 1.5 h, 68%; (o) (i) dimethyl *N*-cyanodithioiminocarbonate, MeOH, rt, 18 h; (ii) MeNH₂ in EtOH, rt, 18 h, 64% over two steps.

of the silvlether, oxidation of alcohol 21 by means of Dess-Martin periodinane afforded aldehyde 22 which underwent cycloaddition with TosMIC.23 The resulting oxazoline diastereomers 23 were treated with a solution of ammonia in MeOH at elevated temperature in a sealable pressure tube giving rise to the desired imidazole 24 in up to 68% yield.²⁴ Besides the expected imidazole isomer 24a, epimer 24b was identified as well due to the basic and high temperature conditions applied. Best results (24a:24b = 5:1) were obtained by heating at 95 °C, while higher temperatures caused increased epimerization. Following the protocol of Harusawa et al., imidazole 24 was converted to its base-sensitive carbamate-protected derivative 25 using ethyl chloroformate to improve the solubility properties and to facilitate the separation of the epimers at a later stage of the reaction sequence.²⁶ Cleavage of the benzyl ether to give alcohol 26 was realized by catalytic transfer hydrogenation using palladium hydroxide on carbon and cyclohexene as the hydrogen donor.²⁷ At this point, separation of the isomers was necessary since the next step provided several side-products, which were otherwise tedious to separate and to characterize. To displace the hydroxyl group of the (3R)isomer 26a with an amino moiety, a phthaloylimination under Mitsunobu conditions and subsequent hydrazinolysis were performed.²⁸ By treating 26a with phthalimide in the presence of PPh3 and DIAD, the desired phthalimide 27a was obtained in low yield. Further ring-opening gave phthalimides 28 as a mixture of epimers due to a cyclopropylcarbinyl-homoallylic rearrangement (Scheme 4).²⁹ Diene 29 was observed as well but was not separable from the triphenylphosphine oxide byproduct. In order to optimize the conditions for the preparation of the desired phthalimide 27a different conditions were screened using model compound 19. However, the change of the addition order of the reagents, variation in the relative reagent concentrations and different reaction temperatures and solvents did not lead to a significantly improved ratio of products. Cleavage of the phthalimide moiety of compound 27a by means of hydrazinolysis proceeded smoothly with simultaneous removal of the base-sensitive carbamate protection group at the imidazole ring to give the desired target compound amine 8a (Scheme 3). The conversion to the analogous cyanoguanidine-containing compound 6a required two additional steps. First, amine 8a was treated with an

excess of dimethyl *N*-cyanodithioiminocarbonate in MeOH to furnish an isothiourea compound which was then directly converted without purification to the desired cyanoguanidine **6a** by adding an ethanolic solution of MeNH₂.²⁶

The respective (3*S*)-configured target compounds, amine **8b** and cyanoguanidine **6b**, were derived from the corresponding (3*S*)-configured alcohol **26b** running through an analogous synthetic pathway *via* phthalimide **27b**. Consequently, the (6*R*)-configured target molecules, amines **6a** and **6b** and the cyanoguanidines **8a** and **8b** could be prepared. Additionally, by employing the (*R*,*R*)-isopropyl bis(oxazoline) ligand in the cyclopropanation step, the respective (6*S*)-enantiomers, amines **8c** and **8d** and cyanoguanidines **6c** and **6d**, were accessible.

As a putative bioisostere of the imidazole, an oxazole moiety was introduced by elimination of p-toluene sulfinic acid from tosyloxazoline 16 accompanied by transesterification of the ethyl ester group to give compound 33 (Scheme 5).²³ Subsequent reduction with LiAlH₄ furnished alcohol 34. The hydroxy group was converted into a phthalimide moiety via a Mitsunobu reaction.²⁸ In comparison to the similar transformation of 26a to 27a described above, the reaction proceeded with the formation of smaller amounts of ring opening products and this with higher yield to the desired 35 (55% vs. 29% for 27a) for reasons that are not clear. Hydrazinolysis gave rise to the amine 9a. The corresponding cyanoguanidine 7a was readily obtained by converting the amino group with dimethyl N-cyanodithioiminocarbonate to isothiourea 36 followed by treatment with MeNH₂ in EtOH.²⁶ In turn, the application of the enantiomeric isopropyl bis(oxazoline) ligand in the asymmetric cyclopropanation reaction provided access to the enantiomeric target compounds, 9b and 7b, as well.

Pharmacology

All the synthesized target compounds depicted in Fig. 2 were investigated at the hH₁R, hH₂R, hH₃R and hH₄R in radioligand binding assays using membrane preparations of Sf9 insect cells coexpressing the hH₁R + RGS4, hH₂R–Gs_{α s} fusion protein, hH₃R + G α _{i2} + G β ₁ γ ₂ or hH₄R + G α _{i2} + G β ₁ γ ₂, respectively. Those compounds having submicromolar *K*_i values were investigated for agonism or antagonism at hH₃R and hH₄R subtypes in functional [³⁵S]GTP γ S assays using the above

Scheme 5 Reagents and conditions: (a) K₂CO₃, MeOH, reflux, 0.5 h, 31%; (b) LAH, THF, 0 °C, 0.5 h, 71%; (c) PPh₃, phthalimide, DIAD, THF, 0 °C, 0.5 h, 55%; (d) hydrazine hydrate, EtOH, reflux, 1.5 h, 72%; (e) dimethyl *N*-cyanodithioiminocarbonate, EtOH, rt, 18 h, quant.; (f) MeNH₂ in EtOH, rt, 18 h, 90%.

mentioned membrane preparations. Intrinsic activities (α) refer to the maximal response induced by the standard agonist histamine ($\alpha = 1.0$). Compounds identified to be inactive as agonists ($\alpha < 0.13$ or negative values, respectively, determined in the agonist mode) were investigated in the antagonists mode. The corresponding $K_{\rm B}$ values of neutral antagonists were determined from the concentration-dependent inhibition of the histamine-induced increase in [³⁵S]GTPγS binding.

In agreement with the findings of Hashimoto *et al.*, the amines **8a–d** exhibited significantly stronger binding affinities at the hH₃R than at the hH₄R (Table 1). At the hH₃R the (6*R*)-configured eutomers **8a** and **8b** showed submicromolar K_i values. Both compounds were about 10-fold more potent than their (6*S*)-configured distomers **8c** and **8d**. At the hH₄R, compounds **8a** and **8d**, having the (3*R*)-configuration, exhibited weak binding affinities with low micromolar K_i values. In contrast to this, the respective (3*S*)-configured epimers **8b** and **8c** did not show any significant binding ($K_i > 10\ 000\ nM$) at this receptor subtype. An unambiguous preference for either the folded isomers ((3*R*,6*R*)-*tians*-**8b** and (3*R*,6*S*)-*trans*-**8c**) was not observed at both receptor subtypes. As a result, binding affinities for the amines **8a**, **8b**, **8c** and **8d** at the hH₃R were 25,

>34, >4 and 3-fold higher than at the hH₄R subtype, respectively. Additionally, **8a–d** were devoid of activity at the hH₁R and hH₂R. **8a** and **8b** were investigated for their functional activity at the hH₃R. In contrast to imifuramine and its stereoisomers, which were all reported to act as full agonists at the H₃R,¹⁸ **8a** and **8b** turned out to be almost neutral antagonists with $K_{\rm B}$ values of 181 and 32 nM, respectively. The elongated spacer and the different spatial arrangement of the pharmacophoric elements were tolerated to a certain extent for the conformationally constrained amines compared to Hashimoto's THF-based ligands. At both HR subtypes comparable $K_{\rm i}$ values were determined, especially at the hH₃R, but the quality of action was different.

In contrast, the cyanoguanidines **6a–d** turned out to be inactive ($K_i > 10\,000$ nM) at all four HR subtypes, notably at the H₄R. In this case, the orientation of the pharmacophoric elements, provided by the bicyclic core, is detrimental for receptor binding. An increase in hH₄R affinity by replacement of the amino group with a cyanoguanidino moiety – as observed for the imifuramine based compounds¹⁸ – was not achieved.

The synthesized oxazoles 9a, 9b, 7a and 7b were investigated in radioligand binding assays at the hH₁R and hH₂R

Table 1 Affinities, potencies and efficacies of the synthesized amines and cyanoguanidines at the hHR subtypes determined in radioligand binding studies^a and functional [^{35}S]GTP γ S assays^b

Compound	Config.	hH ₁ R		hH ₂ R		hH ₃ R			hH_4R		
		$K_{\rm i}$ (nM)	Ν	$K_{\rm i}$ (nM)	Ν		α	Ν		α	Ν
Histamine ^c		200		$5 imes 10^4$		10			7.9(13)		
						(5.0)	1.00			1.00	
Imifuramine $(2)^d$		_				229			891		
						(45)	1.04		(1995)	0.70	
OUP-16 $(3)^d$		_				2188			126		
						(3261)	0.79		(78)	0.99	
8a	3R.6R	Inactive	2	Inactive	2	231 ± 106		3	5787 ± 853		2
	-)-					(181 ± 119)	-0.10	2			
8b	3S.6R	Inactive	2	Inactive	2	295 ± 154		2	>10 000		2
						(32 ± 17)	-0.12	2			
8c	3S, 6S	Inactive ^e	2	Inactive ^e	2	2326 ± 982		2	>10 000		2
8d	3R,6S	Inactive ^e	2	Inactive ^e	2	2818 ± 1823		2	8415 ± 417		2
6a	3R,6R	Inactive ^e	2	Inactive ^e	2	Inactive		2	Inactive		2
6b	35,6R	Inactive ^e	2	Inactive ^e	2	Inactive		2	Inactive		2
6c	35,65	Inactive ^e	2	Inactive ^e	2	Inactive		2	Inactive		2
6d	3R,6S	Inactive ^e	2	Inactive ^e	2	Inactive		2	Inactive		2
9a	3R,6R	Inactive ^e	2	Inactive ^e	2	(Inactive)	-0.08	2	(Inactive)	0.02	2
9b	35,65	Inactive ^e	2	Inactive ^e	2	(Inactive)	-0.06	2	(Inactive)	0.13	2
7a	3R,6R	Inactive ^e	2	Inactive ^e	2	(Inactive)	0.07	2	(Inactive)	-0.03	2
7b	35,65	Inactive ^e	2	Inactive ^e	2	(Inactive)	-0.07	2	(Inactive)	-0.06	2

^{*a*} Determination of hH₁R binding by displacement of [³H]pyrilamine (5 nM) from Sf9 cell membranes expressing the hH₁R + RGS4, hH₂R binding by displacement of [³H]UR-DE257 (30 nM) from Sf9 cell membranes expressing the hH₂R-Gs_{α s}, hH₃R binding by displacement of [³H] N^{α}-methylhistamine (3 nM) or [³H] bistamine (15 nM) from Sf9 cell membranes expressing the hH₃R + G α ₁₂ + G β ₁₇₂ or hH₄R binding by displacement of [³H] bistamine (15 nM) from Sf9 cell membranes expressing the hH₄R + G α ₁₂ + G β ₁₇₂ or hH₄R binding by displacement of [³H] bistamine (15 nM) from Sf9 cell membranes expressing the hH₄R + G α ₁₂ + G β ₁₇₂ was determined as described in the Pharmacology section. ^{*b*} Functional [³⁵S] GTP γ S binding assays with membrane preparations of Sf9 cells expressing the hH₃R + G α ₁₂ + G β ₁₇₂ or the hH₄R + G α ₁₂ + G β ₁₇₂ were performed as described in the Pharmacology section. ^{*a*}b Ligands concentrations from 1 nM to 1 mM as appropriate to generate saturated concentration/response curves. Compounds showing no effect in this range were referred to as inactive. *N* gives the number of independent experiments performed in triplicate each. The intrinsic activity (*a*) of histamine was set to 1.00 and *a* values of other compounds were referred to this value. The *a* values of neutral antagonists and inverse agonists were determined at a concentration of 10 µM. The K_B values of neutral antagonist mode *versus* histamine (100 nM) as the agonist. ^{*c*} Values taken from Igel *et al.*^{30 d} Values for hH₃R and hH₄R taken from Hashimoto *et al.*^{18 e} Measured at a ligand concentration of 100 µM.

subtypes and in functional [35 S]GTP γ S assays at the hH₃R and hH₄R subtypes but did not reveal any activity at all receptor subtypes. Even oxazole **9a**, whose imidazole analogue **8a** exhibited submicromolar affinities at the hH₃R, was inactive at the hH₃R. Thus, in this class of HR ligands, independently from the other structural modifications, the oxazole ring proved to be inappropriate as a bioisostere of an imidazole ring. This is presumably due to a different H-bond donor-acceptor interaction pattern and the reduced basicity of the oxazole moiety compared to the imidazole ring.

Conclusion

In conclusion, we have synthesized and pharmacologically characterized a set of bicyclic imifuramine analogues as potential histamine receptor ligands. In the imidazole series, the conformationally constrained amines and cyanoguanidines were obtained in 15 and 17 steps, respectively, starting from commercially available furan-2-carboxylic acid. The oxazole analogues could be realized in 10 and 12 steps, respectively. The synthetic pathways deliver valuable information about the scope and limitations of the rigid bicyclic core in terms of chemical transformations of its substituents. In the case of

the imidazole compounds the introduction of the aromatic heterocyles by TosMIC chemistry gave rise to additional epimers. As a result, different isomers with distinct stereochemical orientations could be achieved. Pharmacological investigations at the human HR subtypes revealed affinities of the amines 8 at the hH₃R in a comparable range as reported for the imifuramine derived stereoisomers, but with different qualities of action. Especially 8b showed high subtype selectivity for the hH₃R with no affinity for the hH₄R. In agreement with these findings and in contrast to the cyanoguanidine 3 bearing the tetrahydrofuran moiety, the cyanoguanidines 6 were devoid of activity at the hH4R as well. These results suggest that the 2-oxabicyclo[3.1.0]hexane framework used in this study might be a promising scaffold for the hH₃R selective ligands. Replacement of the imidazole ring by an oxazole substituent as a potential bioisostere led to loss of activities at HR subtypes. Apparently, the H-bond donor and acceptor properties and the basicity of the oxazole ring are inappropriate.

These findings contribute to the objective of further elucidating the structural requirements of selective histamine H_3 and H_4 receptor ligands that may help to enable the synthesis of tailored compounds as novel pharmacological tools and potential drugs with the intended quality of action.

Experimental

Chemistry

Analytical HPLC analysis was performed with a system from Merck (Darmstadt, Germany) consisting of a L-5000 controller, a 655A-12 pump, a 655A-40 autosampler and a L-4250 UV-VIS detector on a Eurospher-100 C18 column (250 × 4 mm, 5 µm, Knauer, Berlin, Germany) at a flow rate of 0.8 mL min⁻¹. Mixtures of acetonitrile and 0.05% aq. TFA were used as the mobile phase. Helium degassing was used throughout. Compound purities were calculated as the percentage peak area of the analyzed compound by UV detection at 210 nm. HPLC conditions, retention times (t_R), capacity factors ($k' = (t_R - t_0)/t_0$) and purities of the synthesized compounds are listed in the ESI,[†]

All reactions were carried out in oven-dried glassware under atmospheric conditions unless otherwise stated. All solvents were dried and distilled prior to use. Thin layer chromatography (TLC) was performed using silica gel 60 F254 aluminium plates (Merck). Eluted plates were visualized using a 254 nm UV lamp and/or by treatment with a suitable stain followed by heating. Column chromatography was performed on silica gel 60 (0.063-0.200 mm, Merck). ¹H- and ¹³C-NMR spectra were recorded on a Bruker Avance 300 (300 MHz for ¹H, 75 MHz for ¹³C), Bruker Avance III 400 "Nanobay" (400 MHz for 1 H, 101 MHz for 13 C) or Avance III 600 (600 MHz for ¹H, 151 MHz for ¹³C) FT-NMR-spectrometer. Chemical shifts are reported in parts per million (ppm). ATR-IR spectroscopy was carried out on a Biorad Excalibur FTS 3000 spectrometer equipped with a Specac Golden Gate Diamond Single Reflection ATR-system. Optical rotations were measured on a P8000T polarimeter (Kruess) at a wavelength of 589 nm in a 5 cm cell of 0.7 mL volume in the specified solvent. Concentrations are indicated in [g/100 mL]. The melting points were measured on a Büchi SMP-20 apparatus in a silicon oil bath. Values thus obtained were not corrected. Mass spectrometry was performed on a Varian MAT 311A, Finnigan MAT 95, Thermoquest Finnigan TSQ 7000 or Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS. The percentage set in brackets gives the peak intensity related to the basic peak (I = 100%). High resolution mass spectrometry (HRMS): the molecular formula was proven by the calculated precise mass. Elemental analyses (C, H, N, Heraeus Elementar Vario EL III) were performed by the Analytical Department of the University of Regensburg.

Preparative HPLC was performed at room temperature with a system from Knauer (Berlin, Germany) consisting of two K-1800 pumps, a K-2001 detector (UV detection at 220 nm) and a RP-column (VP Nucleodur 100-5 C18 ec, 250 × 21 mm, 5 µm, Macherey Nagel, Düren, Germany) at a flow rate of 15 mL min⁻¹ or a RP-column (YMC-Triat C18, 150 × 20.0 m, 5 µm, YMC Europe GmbH, Dinslaken, Germany) at a flow rate of 10 mL min⁻¹. Mixtures of acetonitrile and 0.1% aq. TFA were used as the mobile phase in the case of the Nucleodur column and mixtures of acetonitrile and 0.1% aq. NH₃ were used as the mobile phase in the case of the YMC-Triat column. Acetonitrile was removed from the eluates under reduced pressure at 45 °C prior to lyophilization.

Preparation of 1-(((1S,3R,5S,6R)-3-(1H-imidazol-5-yl)-2-oxabicyclo[3.1.0]hexan-6-yl)methyl)-2-cyano-3-methylguanidine (6a). A solution of compound 8a (5.0 mg, 0.028 mmol) and dimethyl *N*-cyanodithioiminocarbonate (9.9 mg, 0.067 mmol, 2.4 equiv.) in anhydrous MeOH (0.55 mL) was stirred at room temperature for 18 h. Then a 33% solution of MeNH₂ in EtOH (0.52 mL) was added and stirred for 18 h at room temperature. The solvent was evaporated to give a residual oil that was purified by column chromatography (EtOAc–MeOH 4:1) to give compound 6a (5.0 mg, 0.019 mmol, 69%) as a colorless oil. For pharmacological testing the product was further purified by preparative HPLC (YMC-Triat column, mobile phase: MeCN, 0.1% aq. NH₃).

 $R_{\rm f}$ = 0.19 (EtOAc–MeOH 4 : 1); $[a]_{\rm D}^{20}$ = +18.2 (MeOH, *c* = 0.2); ¹H-NMR (300 MHz, MeOD): $\delta_{\rm H}$ = 7.62 (d, *J* = 1.0 Hz, 1H), 6.96 (s, 1H), 5.38 (t, *J* = 7.9 Hz, 1H), 3.89 (dd, *J* = 6.4, 1.1 Hz, 1H), 3.05 (dd, *J* = 14.3, 6.9 Hz, 1H), 2.91 (dd, *J* = 14.3, 7.9 Hz, 1H), 2.79 (s, 3H), 2.55 (dt, *J* = 12.8, 7.4 Hz, 1H), 2.06 (ddd, *J* = 12.8, 8.1, 1.9 Hz, 1H), 1.74–1.63 (m, 1H), 1.46–1.36 (m, 1H); ¹³C-NMR (75 MHz, MeOD): $\delta_{\rm C}$ = 161.96 (C_q), 140.02 (C_q), 136.79 (+), 120.08 (C_q), 117.42 (+), 83.90 (+), 65.43 (+), 42.58 (−), 36.41 (−), 33.19 (+), 28.67 (+), 24.09 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3268 (br), 2928, 2160, 1729, 1575, 1485, 1448, 1404, 1369, 1247, 1174, 1097, 1066, 1030, 988, 838, 752, 716, 618, 570; MS (ESI): *m/z* (%) = 163.1 [M⁺ΔC₃H₅N₄] (60), 261.1 [MH⁺] (100); HRMS (ESI): calcd for C₁₂H₁₇N₆O [MH⁺] 261.1458, found 261.1458.

Preparation of 1-(((15,35,55,6R)-3-(1H-imidazol-5-yl)-2-oxabicyclo[3.1.0]hexan-6-yl)methyl)-2-cyano-3-methylguanidine (6b). A solution of compound 8b (3.0 mg, 0.017 mmol) and dimethyl *N*-cyanodithioiminocarbonate (8.2 mg, 0.05 mmol, 3.0 equiv.) in anhydrous MeOH (0.34 mL) was stirred at room temperature for 18 h. Then a 33% solution of MeNH₂ in EtOH (0.31 mL) was added. The resulting mixture was stirred for 18 h at room temperature. The solvent was evaporated to give a residual oil that was purified by column chromatography (EtOAc-MeOH 4:1) to give compound 6b (2.8 mg, 0.011 mmol, 64%) as a colorless oil. For pharmacological testing the product was further purified by preparative HPLC (YMC-Triat column, mobile phase: MeCN, 0.1% aq. NH₃).

*R*_f = 0.19 (EtOAc–MeOH 4 : 1); $[α]_D^{20}$ = +36.7 (MeOH, *c* = 0.1); ¹H-NMR (600 MHz, MeOD): $δ_H$ = 7.62 (s, 1H), 7.00 (s, 1H), 4.76 (dd, *J* = 8.7, 7.7 Hz, 1H), 3.94 (dd, *J* = 5.7, 1.1 Hz, 1H), 3.07 (dd, *J* = 14.3, 6.9 Hz, 1H), 2.97 (dd, *J* = 14.3, 7.7 Hz, 1H), 2.81 (s, 3H), 2.29 (dd, *J* = 12.4, 7.1 Hz, 1H), 2.25–2.19 (m, 1H), 1.62–1.59 (m, 1H), 1.59–1.54 (m, 1H); ¹³C-NMR (151 MHz, MeOD): $δ_C$ = 162.01 (C_q), 136.88 (+), 120.08 (C_q), 63.74 (+), 49.57 (+), 42.71 (−), 35.51 (−), 28.69 (+), 22.28 (+), 21.94 (+), Im- *C*5 and Im-*C*4 signals too weak to be observed; IR (ATR): $\tilde{ν}$ (cm⁻¹) = 2934 (br), 2163, 1582, 1486, 1410, 1372, 1322, 1175, 1121, 1100, 922, 892, 833, 689, 617; MS (ESI): *m/z* (%) = 261.1 [MH⁺] (100), 521.2 [2MH⁺] (15); HRMS (ESI): calcd for C₁₂H₁₇N₆O [MH⁺] 261.1458, found 261.1457. Preparation of 2-cyano-1-methyl-3-(((15,3R,5S,6R)-3-(oxazol-5-yl)-2-oxabicyclo[3.1.0]hexan-6-yl)methyl) guanidine (7a). Compound 36 (26 mg, 0.09 mmol) was dissolved in a 33% solution of MeNH₂ in EtOH (2 mL) and stirred for 18 h at room temperature. The solvent was evaporated under reduced pressure. Purification by column chromatography (DCM then DCM-MeOH 9:1) afforded compound 7a (22 mg, 0.08 mmol, 90%) as a colorless oil.

 $R_{\rm f}$ = 0.32 (DCM–MeOH 9:1); $[\alpha]_{\rm D}^{20}$ = +18.9 (DCM, c = 1.0); 1 H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ = 7.84 (s, 1H), 6.96 (s, 1H), 5.64 (s, 1H), 5.43 (dd, J = 8.3, 7.4 Hz, 1H), 5.20 (s, 1H), 3.95 (dd, J = 6.3, 1.0 Hz, 1H), 3.24–3.13 (m, 1H), 2.95–2.86 (m, 1H), 2.85 (d, J = 4.9 Hz, 3H), 2.62 (ddd, J = 13.1, 8.6, 7.0 Hz, 1H), 2.14 (ddd, J = 13.1, 7.0, 1.4 Hz, 1H), 1.73–1.67 (m, 1H), 1.37 (tdd, J = 8.0, 4.0, 1.0 Hz, 1H); 13 C-NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ = 160.65 (Cq), 151.72 (Cq), 151.44 (+), 124.01 (+), 118.53 (Cq), 78.46 (+), 65.08 (+), 42.03 (–), 33.91 (–), 30.74 (+), 28.57 (+), 23.15 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3292 (br), 2954, 2929, 2165, 1583, 1507, 1453, 1409, 1370, 1174, 1103, 1028, 963, 838, 717; MS (ESI): m/z (%) = 262.1 (25) [MH⁺], 523.2 (100) [2MH⁺]; HRMS (EI): calcd for C₁₂H₁₅N₅O₂ [M⁺] 261.1226, found 261.1222.

Preparation of ((1*S*,3*R*,5*S*,6*R*)-3-(1*H*-imidazol-5-yl)-2-oxabicyclo[3.1.0]hexan-6-yl)methanamine (8a). A solution of phthalimide 27a (30 mg, 0.079 mmol) and hydrazine hydrate (21 μ L, 0.43 mmol, 5.4 equiv.) in anhydrous EtOH (1.6 mL) was refluxed for 1 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography (MeOH–saturated NH₃ in MeOH 95:5) to afford compound 8a (11 mg, 0.061 mmol, 77%) as a colorless amorphous solid. For pharmacological testing the product was further purified by preparative HPLC (Nucleodur column, mobile phase: MeCN, 0.1% aq. TFA).

*R*_f = 0.20 (MeOH-saturated NH₃ in MeOH 95 : 5); $[α]_D^{20}$ = +36.4 (MeOH, *c* = 0.5); ¹H-NMR (300 MHz, MeOD): $\delta_{\rm H}$ = 7.61 (d, *J* = 1.0 Hz, 1H), 6.95 (s, 1H), 5.38 (t, *J* = 7.9 Hz, 1H), 3.82 (dd, *J* = 6.4, 1.2 Hz, 1H), 2.63–2.49 (m, 1H), 2.38 (d, *J* = 7.3 Hz, 2H), 2.04 (ddd, *J* = 12.7, 8.0, 1.9 Hz, 1H), 1.61 (tdd, *J* = 6.2, 3.9, 1.9 Hz, 1H), 1.26 (tdd, *J* = 7.4, 4.0, 1.1 Hz, 1H); ¹³C-NMR (75 MHz, MeOD): $\delta_{\rm C}$ = 136.71 (+), 117.55 (+), 83.87 (+), 65.46 (+), 42.61 (−), 36.63 (−), 36.07 (+), 23.99 (+), Im-C_q-signal too weak to be observed; IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3094 (br), 2937, 2869, 2625, 1573, 1454, 1414, 1361, 1306, 1177, 1098, 1067, 1028, 980, 912, 841, 632, 540, 497; MS (ESI): *m*/*z* (%) = 163.1 (100) [MH⁺ΔNH₃], 180.1 (19) [MH⁺], 359.2 (11) [2MH⁺]; HRMS (ESI): calcd for C₉H₁₄N₃O [MH⁺] 180.1131, found 180.1130.

8a·2TFA: ¹H-NMR (600 MHz, MeOD): $\delta_{\rm H}$ = 8.83 (d, J = 1.0 Hz, 1H), 7.45 (s, 1H), 5.51 (t, J = 7.4 Hz, 1H), 4.10 (dd, J = 6.3, 0.7 Hz, 1H), 2.90–2.63 (m, 3H), 2.14 (ddd, J = 13.1, 7.0, 1.5 Hz, 1H), 1.92–1.87 (m, 1H), 1.31–1.26 (m, 1H); ¹³C-NMR (151 MHz, MeOD): $\delta_{\rm C}$ = 163.10 (C_q, TFA), 162.87 (C_q, TFA), 136.63 (+), 135.90 (C_q), 119.17 (+, TFA), 117.23 (+, TFA), 116.76 (+), 79.55 (+), 65.65 (+), 40.61 (-), 35.88 (-), 29.34 (+), 24.45 (+).

Preparation of ((1*S*,3*S*,5*S*,6*R*)-3-(1*H*-imidazol-5-yl)-2-oxabicyclo[3.1.0]hexan-6-yl)methanamine (8b). A solution of phthalimide 27b (16 mg, 0.042 mmol) and hydrazine hydrate (11 μ L, 0.23 mmol, 5.4 equiv.) in anhydrous EtOH (0.85 mL) was refluxed for 1.5 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography (MeOH-saturated NH₃ in MeOH 97:3) to afford compound **8b** (5.1 mg, 0.028 mmol, 68%) as a colorless amorphous solid. For pharmacological testing the product was further purified by preparative HPLC (Nucleodur column, mobile phase: MeCN, 0.1% aq. TFA).

8b-2TFA: $R_{\rm f} = 0.20$ (MeOH-saturated NH₃ in MeOH 95 : 5); $[\alpha]_{\rm D}^{20} = +5.5$ (DCM, c = 0.2); ¹H-NMR (600 MHz, MeOD): $\delta_{\rm H} = 8.88$ (d, J = 1.3 Hz, 1H), 7.50 (d, J = 0.9 Hz, 1H), 4.94 (dd, J = 8.9, 7.5 Hz, 1H), 4.14 (dd, J = 5.8, 1.2 Hz, 1H), 2.82 (dd, J = 13.4, 8.0 Hz, 1H), 2.77 (dd, J = 13.4, 7.8 Hz, 1H), 2.51 (dd, J = 12.7, 7.4 Hz, 1H), 2.22 (ddd, J = 12.8, 9.1, 5.6 Hz, 1H), 1.83–1.79 (m, 1H), 1.56 (tdd, J = 7.9, 3.9, 1.1 Hz, 1H). ¹³C-NMR (151 MHz, MeOD): $\delta_{\rm C} = 162.80$ (C_q, TFA), 162.56 (C_q, TFA), 136.08 (C_q), 134.59 (+), 119.04 (+, TFA), 117.45 (+), 117.11 (+, TFA), 72.81 (+), 64.08 (+), 40.76 (-), 35.51 (-), 22.52 (+), 20.51 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3240 (br), 2935, 2873, 2627, 1580, 1492, 1420, 1372, 1312, 1180, 1101, 899, 840, 630, 540; MS (ESI): m/z (%) = 180.0 (100) [MH⁺], 359.2 (20) [2MH⁺]; HRMS (ESI): calcd for C₉H₁₄N₃O [MH⁺] 180.1131, found 180.1133.

Preparation of ((1*S*,3*R*,5*S*,6*R*)-3-(oxazol-5-yl)-2-oxabicyclo-[3.1.0]hexan-6-yl)methanamine (9a). A solution of phthalimide 35 (60 mg, 1.19 mmol) and hydrazine hydrate (48 mg, 0.97 mmol, 5 equiv.) in EtOH (4 mL) was refluxed for 1.5 h and then cooled in an ice bath. The white precipitate was removed by filtration through a Celite pad. The filtrate was concentrated *in vacuo*. Column chromatography (DCM–saturated NH₃ in MeOH 20:1) afforded compound 9a (25 mg, 0.10 mmol, 72%) as a colorless solid.

$$\begin{split} & \text{Mp} = 51 \ ^\circ\text{C}; \ R_{\text{f}} = 0.32 \ (\text{DCM-saturated NH}_3 \text{ in MeOH 9:1}); \\ & [\alpha]_{\text{D}}^{20} = +36.2 \ (\text{DCM}, \ c = 1.0); \ ^1\text{H-NMR} \ (400 \ \text{MHz}, \ \text{CDCl}_3): \ \delta_{\text{H}} = \\ & 7.80 \ (\text{s}, 1\text{H}), \ 6.93 \ (\text{s}, 1\text{H}), \ 5.41 \ (\text{dd}, \ J = 8.1, \ 7.4 \ \text{Hz}, 1\text{H}), \ 3.82 \\ & (\text{dd}, \ J = 6.3, \ 1.2 \ \text{Hz}, 1\text{H}), \ 2.58 \ (\text{ddd}, \ J = 12.9, \ 8.6, \ 7.0 \ \text{Hz}, 1\text{H}), \\ & 2.51-2.39 \ (\text{m}, \ 2\text{H}), \ 2.11 \ (\text{ddd}, \ J = 12.9, \ 6.9, \ 1.5 \ \text{Hz}, 1\text{H}), \\ & 1.59-1.51 \ (\text{m}, 1\text{H}), \ 1.28-1.22 \ (\text{m}, 1\text{H}), \ 1.25 \ (\text{br} \ \text{s}, 2\text{H}); \ ^{13}\text{C-NMR} \\ & (75 \ \text{MHz}, \ \text{CDCl}_3): \ \delta_{\text{C}} = 152.16 \ (\text{Cq}), \ 151.25 \ (+), \ 123.68 \ (+), \ 78.37 \\ & (+), \ 65.19 \ (+), \ 42.33 \ (-), \ 34.78 \ (-), \ 34.12 \ (+), \ 22.68 \ (+); \ \text{IR} \ (\text{ATR}): \\ & \ddot{\nu} \ (\text{cm}^{-1}) = 3356 \ (\text{br}), \ 3127, \ 2949, \ 1636, \ 1567, \ 1508, \ 1482, \ 1427, \\ 1377, \ 1318, \ 1180, \ 1103, \ 1027, \ 980, \ 955, \ 849, \ 723, \ 646, \ 610; \ \text{MS} \\ & (\text{ESI}): \ m/z \ (\%) = \ 181.0 \ (7) \ [\text{MH}^+], \ 222.0 \ (100) \ [\text{MH}^+\text{MeCN}]; \\ \text{HRMS} \ (\text{ESI}): \ \text{calcd} \ \text{for} \ \ \text{C}_9\text{H}_{13}\text{N}_2\text{O}_2 \ \ [\text{MH}^+] \ 181.0972, \ \text{found} \\ 181.0969. \end{split}$$

Preparation of (1*S*,3*R*,5*S*,6*S*)-ethyl 3-(hydroxymethyl)-2-oxabicyclo[3.1.0]hexane-6-carboxylate (14). To a stirred ice-cooled solution of 13 (2.45 g, 11.4 mmol) in anhydrous THF (45 mL) under a nitrogen atmosphere, a suspension of LAH (260 mg, 6.87 mmol, 0.6 equiv.) in anhydrous THF (5 mL) was added dropwise within 10 min. The reaction mixture was stirred for 45 min at 0 °C. After dropwise addition of water (260 µL) the mixture was stirred for another 30 min. Then a 15% aqueous NaOH solution (260 µL) was added, followed by water (780 µL). The mixture was warmed to room temperature, treated with MgSO₄ and filtered through a Celite pad. The solvent was evaporated under reduced pressure. The crude product was purified by chromatography (PE–EtOAc 1:1) to obtain compound **14** (1.85 g, 9.94 mmol, 87%) as a colorless oil.

$$\begin{split} R_{\rm f} &= 0.34 \; (\text{PE-EtOAc } 1:1), \; 0.49 \; (\text{EtOAc}); \; [\alpha]_{\rm D}^{20} = +63.7 \; (\text{DCM}, \\ c &= 1.0); \; ^1\text{H-NMR} \; (300 \; \text{MHz}, \; \text{CDCl}_3): \; \delta_{\rm H} = 4.60-4.50 \; (\text{m}, \; 1\text{H}), \\ 4.18 \; (\text{d}, J = 5.9 \; \text{Hz}, \; 1\text{H}), \; 4.07 \; (\text{q}, J = 7.1 \; \text{Hz}, \; 2\text{H}), \; 3.58 \; (\text{ddd}, J = \\ 11.9, \; 6.0, \; 3.2 \; \text{Hz}, \; 1\text{H}), \; 3.41-3.31 \; (\text{m}, \; 1\text{H}), \; 2.37 \; (\text{ddd}, J = 13.1, \\ 8.8, \; 7.0 \; \text{Hz}, \; 1\text{H}), \; 2.26-2.11 \; (\text{m}, \; 1\text{H}), \; 2.37 \; (\text{ddd}, J = 13.1, \\ 8.8, \; 7.0 \; \text{Hz}, \; 1\text{H}), \; 2.26-2.11 \; (\text{m}, \; 1\text{H}), \; 2.14 \; (\text{br s}, \; 1\text{H}), \; 1.81 \; (\text{ddd}, \\ J = 13.1, \; 7.7, \; 1.1 \; \text{Hz}, \; 1\text{H}), \; 1.72 \; (\text{dd}, J = 3.8, \; 0.8 \; \text{Hz}, \; 1\text{H}), \; 1.22 \; (\text{t}, \\ J = 7.1 \; \text{Hz}, \; 3\text{H}); \; ^{13}\text{C-NMR} \; (75 \; \text{MHz}, \; \text{CDCl}_3): \; \delta_{\rm C} = 170.50 \; (\text{Cq}), \\ 87.00 \; (+), \; 67.37 \; (+), \; 64.91 \; (-), \; 60.59 \; (-), \; 33.39 \; (+), \; 30.31 \; (-), \\ 27.56 \; (+), \; 14.33 \; (+); \; \text{IR} \; (\text{ATR}): \; \tilde{\nu} \; (\text{cm}^{-1}) = 3460 \; (\text{br}), \; 2978, \; 2939, \\ 2880, \; 1713, \; 1454, \; 1407, \; 1386, \; 1309, \; 1269, \; 1175, \; 1111, \; 1074, \\ 1048, \; 980, \; 878, \; 851, \; 808, \; 712; \; \text{MS} \; (\text{ESI}): \; m/z \; (\%) = 186.9 \; (40) \\ [\text{MH}^+], \; 228.0 \; (100) \; [\text{MH}^+\text{MeCN}], \; 373.1 \; (40) \; [2\text{MH}^+], \; 390.0 \; (30) \\ [2\text{MNH}_4^+]; \; \text{HRMS} \; (\text{ESI}): \; \text{calcd} \; \text{for} \; \text{C}_9\text{H}_{15}\text{O}_4 \; [\text{MH}^+] \; 187.0965, \\ \text{found } 187.0966. \end{split}$$

Preparation of (1*S*,3*R*,5*S*,6*S*)-ethyl 3-formyl-2-oxabicyclo-[3.1.0]hexane-6-carboxylate (15). Dess–Martin periodinane (4.24 g, 10.0 mmol, 1.05 equiv.) was added to a solution of alcohol 14 (1.77 g, 9.52 mmol) in DCM (95 mL) at room temperature and stirred for 1 h. After completion the reaction was quenched with a mixture of saturated aqueous Na₂S₂O₃ solution (50 mL) and saturated aqueous NaHCO₃ solution (50 mL). The mixture was stirred for 15 min; afterwards the organic layer was separated and the aqueous layer was extracted with DCM (2 × 50 mL). The combined organic layers were washed with brine (1 × 50 mL), dried over MgSO₄ and evaporated *in vacuo*. The crude product was purified by chromatography (PE–EtOAc 1:1) to give compound 15 (1.54 mg, 8.37 mmol, 88%) as a yellowish oil.

$$\begin{split} R_{\rm f} &= 0.31 \ (\text{PE-EtOAc} \ 1:1); \ [\alpha]_{\rm D}^{20} &= +44.8 \ (\text{DCM}, \ c \ = \ 0.5); \\ ^1\text{H-NMR} \ (300 \ \text{MHz}, \text{CDCl}_3): \\ \delta_{\rm H} &= 9.59 \ (\text{s}, 1\text{H}), \ 4.64 \ (\text{dd}, J = 10.6, \\ 3.8 \ \text{Hz}, 1\text{H}), \ 4.34 \ (\text{dd}, J = 5.7, \ 0.8 \ \text{Hz}, 1\text{H}), \ 4.08 \ (\text{q}, J = 7.1 \ \text{Hz}, \\ 2\text{H}), \ 2.51 \ (\text{ddd}, J = 13.4, \ 10.6, \ 5.7 \ \text{Hz}, 1\text{H}), \ 2.36 \ (\text{dd}, J = 13.3, \\ 3.9 \ \text{Hz}, 1\text{H}), \ 2.20 \ (\text{td}, J = 5.5, \ 3.9 \ \text{Hz}, 1\text{H}), \ 2.36 \ (\text{dd}, J = 3.8, \\ 1.0 \ \text{Hz}, 1\text{H}), \ 2.20 \ (\text{td}, J = 5.5, \ 3.9 \ \text{Hz}, 1\text{H}), \ 1.46 \ (\text{dd}, J = 3.8, \\ 1.0 \ \text{Hz}, 1\text{H}), \ 1.23 \ (\text{t}, J = 7.1 \ \text{Hz}, 3\text{H}), \ 1.26 - 1.19 \ (\text{m}, 1\text{H}); \ ^{13}\text{C-NMR} \\ (75 \ \text{MHz}, \text{CDCl}_3): \\ \delta_{\rm C} &= 203.36 \ (+), \ 170.20 \ (\text{Cq}), \ 85.29 \ (+), \ 67.22 \\ (+), \ 60.85 \ (-), \ 30.26 \ (-), \ 27.54 \ (+), \ 25.21 \ (+), \ 14.31 \ (+); \ \text{IR} \ (\text{ATR}): \\ \\ \tilde{\nu} \ (\text{cm}^{-1}) &= 3435 \ (\text{br}), \ 2984, \ 1712, \ 1451, \ 1411, \ 1385, \ 1323, \ 1298, \\ 1273, \ 1177, \ 1107, \ 1051, \ 1035, \ 976, \ 926, \ 870, \ 849, \ 796, \ 749, \ 702; \\ \text{MS} \ (\text{CI}): \ m/z \ (\%) &= \ 185.0 \ (15) \ [\text{MH}^+], \ 202.1 \ (100) \ [\text{MNH}_4^+]; \\ \text{HRMS} \ (\text{ESI}): \ \text{calcd} \ \text{for} \ \text{C}_9\text{H}_{13}\text{O}_4 \ [\text{MH}^+] \ 185.0808, \ \text{found} \\ 185.0808. \end{split}$$

Preparation of (15,3*R***,5***S***,6***S***)-ethyl 3-(4-tosyl-4,5-dihydrooxazol-5-yl)-2-oxabicyclo[3.1.0]hexane-6-carboxylate (16). Finely powdered NaCN (70 mg, 1.42 mmol, 0.18 equiv.) was added in one portion to a stirred solution of TosMIC (1.70 g, 8.70 mmol, 1.1 equiv.) and aldehyde 15 (1.46 g, 7.91 mmol) in anhydrous EtOH (80 mL) at room temperature under a nitrogen atmosphere. After 1 h, the solvent was evaporated under reduced pressure. The residue was dissolved in CHCl₃ (100 mL) and washed with a saturated aqueous NaHCO₃ solution (1 × 100 mL). The aqueous layer was extracted with CHCl₃ (1 × 40 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated** *in vacuo***. Purification by column chromatography (PE–EtOAc 1:1) afforded a 2:1** diastereomeric mixture of compound **16** (2.10 g, 5.54 mmol, 70%) as a yellowish foam.

Major: $R_{\rm f}$ = 0.29 (PE–EtOAc 1:1); ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ = 7.80 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 7.01 (s, 1H), 4.91 (dd, J = 5.8, 4.4 Hz, 1H), 4.86 (dd, J = 5.9, 1.7 Hz, 1H), 4.60–4.52 (m, 1H), 4.17 (d, J = 6.0 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 2.51–2.41 (m, 1H), 2.44 (s, 3H), 2.27–2.20 (m, 1H), 1.88 (ddd, J = 13.6, 8.2, 1.2 Hz, 1H), 1.73 (d, J = 3.8, 1H), 1.23 (t, J = 7.1, 3H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 169.87 (C_q), 159.32 (+), 145.83 (C_q), 132.87 (C_q), 129.97 (+), 129.63 (+), 86.60 (+), 85.71 (+), 79.54 (+), 67.06 (+), 60.71 (-), 33.52 (+), 30.01 (-), 26.70 (+), 21.82 (+), 14.29 (+).

Minor: $R_{\rm f}$ = 0.29 (PE–EtOAc 1:1); ¹H-NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ = 7.79 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.00 (s, 1H), 4.99 (dd, J = 6.4, 1.7 Hz, 1H), 4.88–4.81 (m, 1H), 4.63–4.55 (m, 1H), 4.15 (d, J = 6.0 Hz, 1H), 4.07 (q, J = 7.1 Hz, 2H), 2.57–2.49 (m, 1H), 2.44 (s, 3H), 2.27–2.20 (m, 1H), 2.12 (ddd, J = 13.4, 8.2, 1.0 Hz, 1H), 1.73, (d, J = 3.8, 1H), 1.21 (t, J = 7.1, 3H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 170.04 (C_q), 159.15 (+), 145.79 (C_q), 133.02 (C_q), 129.97 (+), 129.53 (+), 87.27 (+), 86.65 (+), 68.76 (+), 67.33 (+), 60.64 (-), 33.15 (+), 30.58 (-), 27.11 (+), 21.82 (+), 14.29 (+).

Data for the isomeric mixture: IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2978, 2936, 1716, 1618, 1453, 1408, 1387, 1306, 1177, 1149, 1108, 1086, 1075, 975, 934, 852, 813, 707, 668; Elemental analysis calcd (%) for C₁₆H₂₁NO₆S·1.2H₂O: C 53.91, H 5.88, N 3.49, S 8.00, found C 53.83, H 5.93, N 3.34, S 7.92.

Preparation of (15,3R,55,6S)-ethyl 3-((*tert*-butyldimethyl-silyloxy)methyl)-2-oxabicyclo[3.1.0]hexane-6-carboxylate (18). To a stirred solution of alcohol 14 (2.53 g, 13.6 mmol) in DCM (45 mL) under a nitrogen atmosphere, anhydrous NEt₃ (2.8 mL, 20 mmol, 1.5 equiv.), TBSCl (2.48 g, 16.5 mmol, 1.2 equiv.) and DMAP (83 mg, 0.68 mmol, 0.05 equiv.) were added successively. The reaction mixture was stirred for 18 h at room temperature and then quenched with a saturated aqueous NH₄Cl solution (40 mL). The layers were separated and the aqueous layer was extracted with DCM (2 × 20 mL). The combined organic phases were dried over MgSO₄, filtered and concentrated *in vacuo*. Purification by column chromatography (PE–EtOAc 5:1) afforded compound **18** (3.88 g, 12.9 mmol, 95%) as a colorless oil.

$$\begin{split} R_{\rm f} &= 0.52 ~(\text{PE-EtOAc}~5:1); ~[\alpha]_{\rm D}^{20} = +35.0 ~(\text{DCM},~c~=~1.0); \\ {}^{1}\text{H-NMR} ~(300~\text{MHz},~\text{CDCl}_3): \delta_{\rm H} = 4.48 ~(\text{ddt}, J = 9.1,~7.0,~4.1~\text{Hz}, \\ 1\text{H}), 4.13 ~(\text{d}, J = 5.9~\text{Hz},~1\text{H}), 4.06 ~(\text{q}, J = 7.1~\text{Hz},~2\text{H}), 3.54 ~(\text{dd}, J = 11.0,~4.0~\text{Hz},~1\text{H}), 3.45 ~(\text{dd}, J = 11.0,~4.2~\text{Hz},~1\text{H}), 2.33 ~(\text{ddd}, J = 13.0,~9.2,~6.9~\text{Hz},~1\text{H}), 2.21-2.11 ~(\text{m},~1\text{H}),~1.91 ~(\text{ddd}, J = 13.0, \\ 6.9, ~0.8~\text{Hz},~1\text{H}),~1.87 ~(\text{dd}, J = 3.9,~0.9~\text{Hz},~1\text{H}),~1.21 ~(\text{t},~J = 7.1~\text{Hz},~3\text{H}),~0.89 ~(\text{s},~9\text{H}),~0.05 ~(\text{s},~3\text{H}),~0.04 ~(\text{s},~3\text{H});~^{13}\text{C-NMR} ~(75~\text{MHz},~\text{CDCl}_3): \delta_{\rm C} = 170.74 ~(+),~86.16 ~(+),~67.32 ~(+),~65.31 ~(-), \\ 60.22 ~(-),~32.22 ~(+),~30.13 ~(-),~27.42 ~(+),~25.94 ~(+),~18.38 ~(\text{Cq}), \\ 14.23 ~(+),~-5.35 ~(+),~-5.43 ~(+);~\text{IR} ~(\text{ATR}): ~\tilde{\nu} ~(\text{cm}^{-1}) = 2955,~2931, \\ 2858,~1720,~1463,~1408,~1309,~1256,~1176,~1112,~1096,~1054, \\ 979,~839,~778;~\text{MS} ~(\text{ESI}):~m/z ~(\%) = ~301.0 ~(100) ~[\text{MH}^+];~\text{HRMS} ~(\text{EI}):~\text{calcd for $C_{15}\text{H}_{28}\text{SiO}_4 ~[\text{M}^{++}]~300.1757,~\text{found}~300.1760. \\ \end{split}$$

Preparation of ((1*S*,3*R*,5*S*,6*R*)-3-((*tert*-butyldimethylsilyloxy)methyl)-2-oxabicyclo[3.1.0]hexan-6-yl)-methanol (19). To a stirred ice-cooled solution of **18** (3.88 g, 12.9 mmol) in anhydrous THF (50 mL) under a nitrogen atmosphere, a suspension of LAH (412 mg, 10.9 mmol, 0.84 equiv.) in anhydrous THF (5 mL) was added dropwise within 10 min. The reaction mixture was stirred for 45 min at 0 °C. After dropwise addition of water (0.41 mL) the mixture was stirred for another 30 min. Then a 15% aqueous NaOH solution (0.41 mL) was added, followed by water (1.24 mL). The mixture was warmed to room temperature, treated with MgSO₄ and filtered through a Celite pad. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (PE–EtOAc 3:1 then 1:1) to obtain compound **19** (3.17 g, 12.3 mmol, 95%) as a colorless oil.

*R*_f = 0.30 (PE-EtOAc 1:1); $[α]_{20}^{20}$ = +44.6 (DCM, *c* = 1.0); ¹H-NMR (300 MHz, CDCl₃): δ_H = 4.43 (tt, *J* = 7.9, 4.9 Hz, 1H), 3.73 (dd, *J* = 6.3, 1.1 Hz, 1H), 3.46 (d, *J* = 4.9 Hz, 2H), 3.37-3.21 (m, 2H), 2.23 (ddd, *J* = 12.8, 8.3, 7.2 Hz, 1H), 2.21 (br s, 1H), 1.68 (ddd, *J* = 12.8, 7.6, 1.5 Hz, 1H), 1.51-1.43 (m, 1H), 1.21-1.13 (m, 1H), 0.85 (s, 9H), 0.01 (s, 6H); ¹³C-NMR (75 MHz, CDCl₃): δ_C = 87.94 (+), 66.01 (-), 64.33 (+), 62.32 (-), 34.78 (+), 31.54 (-), 26.01 (+), 21.98 (+), 18.45 (C_q), -5.25 (+), -5.27 (+); IR (ATR): $\tilde{ν}$ (cm⁻¹) = 3386 (br), 2953, 2929, 2858, 1463, 1410, 1254, 1130, 1095, 1023, 837, 777, 669; MS (ESI): *m/z* (%) = 241.0 (78) [MH⁺ΔH₂O], 259.0 (55) [MH⁺], 276.1 (20) [MNH₄⁺], 300.0 (100) [MH⁺MeCN], 481.2 (35) [2MH⁺Δ2H₂O], 499.2 (85) [2MH⁺ΔH₂O], 517.2 (50) [2MH⁺]; HRMS (ESI): calcd for C₁₃H₂₇O₃Si [MH⁺] 259.1724, found 259.1731.

Preparation of (((15,3R,5S,6R)-6-(benzyloxymethyl)-2-oxabicyclo[3.1.0]hexan-3-yl)methoxy)(tert-butyl)-dimethylsilane (20). To a solution of alcohol 19 (1.00 g, 3.87 mmol) in anhydrous DMF (25 mL), NaH (309 mg, 60 wt% in mineral oil, 7.74 mmol, 2.0 equiv.) was added in one portion at 0 °C under a nitrogen atmosphere. The resulting suspension was stirred at 0 °C for 10 min, and then benzyl bromide (919 µL, 7.74 mmol, 2.0 equiv.) was added dropwise at 0 °C. The mixture was allowed to warm to room temperature and stirred for 2 h. MeOH (5 mL) was added carefully to quench the reaction. The solvent was evaporated under reduced pressure. The residue was diluted in DCM and washed with a saturated aqueous NH₄Cl solution (20 mL). The aqueous phase was extracted with DCM (3 \times 20 mL). The organic layers were combined, dried over MgSO₄ and concentrated in vacuo. The resulting residue was purified by column chromatography (PE-EtOAc 9:1) to obtain compound 20 (1.14 g, 3.28 mmol, 85%) as a colorless oil.

$$\begin{split} R_{\rm f} &= 0.22 \; (\text{PE-EtOAc } 9:1), \, 0.53 \; (\text{PE-EtOAc } 3:1); \; [\alpha]_{\rm D}^{20} = +22.5 \\ (\text{DCM}, \; c \; = \; 1.0); \; ^{1}\text{H-NMR} \; (300 \; \text{MHz}, \; \text{CDCl}_3): \; \delta_{\rm H} \; = \; 7.38-7.22 \\ (\text{m}, \; 5\text{H}), \; 4.46 \; (\text{ddd}, \; J \; = \; 9.8, \; 8.1, \; 4.9 \; \text{Hz}, \; 3\text{H}), \; 3.75 \; (\text{dd}, \; J \; = \; 6.2, \\ 1.1 \; \text{Hz}, \; 1\text{H}), \; 3.50 \; (\text{d}, \; J \; = \; 5.0 \; \text{Hz}, \; 2\text{H}), \; 3.35 \; (\text{dd}, \; J \; = \; 10.6, \; 6.6 \; \text{Hz}, \\ 1\text{H}), \; 3.09 \; (\text{dd}, \; J \; = \; 10.6, \; 7.6 \; \text{Hz}, \; 1\text{H}), \; 2.27 \; (\text{ddd}, \; J \; = \; 12.8, \; 8.3, \; 7.2 \\ \text{Hz}, \; 1\text{H}), \; 1.74 \; (\text{ddd}, \; J \; = \; 12.8, \; 7.5, \; 1.5 \; \text{Hz}, \; 1\text{H}), \; 1.61-1.45 \\ (\text{m}, \; 1\text{H}), \; 1.23 \; (\text{dddd}, \; J \; = \; 7.7, \; 6.7, \; 4.0, \; 1.2 \; \text{Hz}, \; 1\text{H}), \; 0.90 \; (\text{s}, \; J \; = \; 2.9 \\ \text{Hz}, \; 9\text{H}), \; 0.06 \; (\text{d}, \; J \; = \; 1.0 \; \text{Hz}, \; 6\text{H}); \; {}^{13}\text{C-NMR} \; (75 \; \text{MHz}, \; \text{CDCl}_3): \; \delta_{\rm C} \\ = \; 138.50 \; (\text{Cq}), \; 128.49 \; (+), \; 127.75 \; (+), \; 127.68 \; (+), \; 87.80 \; (+), \; 72.50 \\ (-), \; 69.61 \; (-), \; 66.20 \; (-), \; 64.62 \; (+), \; 31.99 \; (+), \; 31.66 \; (-), \; 26.10 \\ (+), \; 22.45 \; (+), \; 18.54 \; (\text{Cq}), \; -5.18 \; (+); \; \text{IR} \; (\text{ATR}): \; \tilde{\nu} \; (\text{cm}^{-1}) \; = \; 3038, \end{split}$$

2932, 2858, 1461, 1380, 1254, 1182, 1132, 1091, 1009, 840, 778, 738, 697; MS (ESI): m/z (%) = 241.1 (100) [M⁺ Δ C₇H₇O], 349.1 (15) [MH⁺], 366.1 (65) [MNH₄⁺], 714.5 (20) [2MNH₄⁺]; HRMS (ESI): calcd for C₂₀H₃₃O₃Si [MH⁺] 349.2193, found 349.2197.

Preparation of ((1S,3R,5S,6R)-6-(benzyloxymethyl)-2-oxabicyclo[3.1.0]hexan-3-yl)methanol (21). To a solution of compound 20 (3.03 mg, 8.69 mmol) in anhydrous THF (60 mL) a solution of TBAF· $3H_2O$ (4.11 mg, 13.0 mmol, 1.5 equiv.) in anhydrous THF (30 mL) was added and stirred for 13 h at room temperature. After evaporating the solvent the crude product was purified by column chromatography (EtOAc) to give 21 (1.94 mg, 8.28 mmol, 95%) as a colorless oil.

$$\begin{split} R_{\rm f} &= 0.42 \ ({\rm EtOAc}); \ [\alpha]_{20}^{20} &= +47.2 \ ({\rm DCM}, \ c = 1.0); \ ^{1}{\rm H-NMR} \\ (300 \ {\rm MHz}, \ {\rm CDCl}_{3}): \ \delta_{\rm H} &= 7.39-7.23 \ ({\rm m}, \ 5{\rm H}), \ 4.59-4.49 \ ({\rm m}, \ 1{\rm H}), \\ 4.48 \ ({\rm d}, J = 2.2 \ {\rm Hz}, \ 2{\rm H}), \ 3.78 \ ({\rm dd}, J = 6.2, \ 1.1 \ {\rm Hz}, \ 1{\rm H}), \ 3.56 \ ({\rm ddd}, \\ J &= 11.4, \ 5.4, \ 3.2 \ {\rm Hz}, \ 1{\rm H}), \ 3.42-3.31 \ ({\rm m}, \ 1{\rm H}), \ 3.26 \ ({\rm dd}, J = 10.5, \\ 7.0 \ {\rm Hz}, \ 1{\rm H}), \ 3.16 \ ({\rm dd}, J = 10.5, \ 7.1 \ {\rm Hz}, \ 1{\rm H}), \ 3.26 \ ({\rm dd}, J = 12.8, \\ 8.1, \ 7.3 \ {\rm Hz}, \ 1{\rm H}), \ 2.07 \ ({\rm br} \ {\rm s}, \ 1{\rm H}), \ 1.69 \ ({\rm ddd}, J = 12.8, \ 8.0, \ 1.6 \ {\rm Hz}, \\ 1{\rm H}), \ 1.55 \ ({\rm ddd}, J = 7.6, \ 6.0, \ 4.0, \ 1.6 \ {\rm Hz}, \ 1{\rm H}), \ 1.20 \ ({\rm tdd}, J = 7.1, \\ 4.0, \ 1.2 \ {\rm Hz}, \ 1{\rm H}); \ ^{13}{\rm C}-{\rm NMR} \ (75 \ {\rm MHz}, \ {\rm CDCl}_3): \ \delta_{\rm C} = 138.35 \ ({\rm Cq}), \\ 128.51 \ (+), \ 127.78 \ (+), \ 127.74 \ (+), \ 88.08 \ (+), \ 72.67 \ (-), \ 69.47 \ (-), \\ 65.36 \ (-), \ 64.71 \ (+), \ 32.57 \ (+), \ 31.17 \ (-), \ 22.51 \ (+); \ {\rm IR} \ ({\rm ATR}): \\ \tilde{\nu} \ ({\rm cm}^{-1}) = \ 3421 \ ({\rm br}), \ 3027, \ 2924, \ 2862, \ 1497, \ 1454, \ 1414, \ 1360, \\ 1180, \ 1087, \ 1071, \ 1028, \ 987, \ 844, \ 810, \ 739, \ 698, \ 614; \ {\rm MS} \ ({\rm ESI}): \\ m/z \ (\%) \ = \ 235.0 \ (5) \ [{\rm MH}^+], \ 469.0 \ (25) \ [2{\rm MH}^+], \ 486.1 \ (75) \\ [2{\rm MH}_4^+], \ 491.1 \ (100) \ \ [2{\rm MNa}^+]; \ {\rm HRMS} \ ({\rm ESI}): \ {\rm calcd} \ {\rm for} \\ {\rm C}_{14}{\rm H}_{18}{\rm NaO}_3 \ [{\rm MNa}^+] \ 257.1148, \ {\rm found} \ 257.1153. \end{split}$$

Preparation of (1S,3R,5S,6R)-6-(benzyloxymethyl)-2-oxabicyclo[3.1.0]hexane-3-carbaldehyde (22). To a stirred solution of alcohol 21 (4.35 g, 18.6 mmol) in DCM (150 mL) was added in one portion Dess-Martin periodinane (8.66 g, 20.4 mmol, 1.1 equiv.) at room temperature. After 2 h, a saturated aqueous NaHCO₃ (60 mL) and a saturated aqueous Na₂S₂O₃ (60 mL) were added. The mixture was stirred for another 15 min. After completion the reaction was quenched with a mixture of saturated aqueous Na2S2O3 solution (60 mL) and saturated aqueous NaHCO₃ solution (60 mL). The mixture was stirred for 15 min, then the organic layer was separated and the aqueous layer was extracted with DCM (2×50 mL). The combined organic layers were washed with brine $(1 \times 50 \text{ mL})$, dried over MgSO₄ and evaporated in vacuo. Purification by column chromatography (PE-EtOAc 1:1) afforded compound 22 (3.87 g, 16.7 mmol, 90%) as a colorless oil.

$$\begin{split} R_{\rm f} &= 0.31 \ (\text{PE-EtOAc}\ 1:1); \ [\alpha]_{\rm D}^{20} &= +57.5 \ (\text{DCM},\ c\ =\ 1.0); \\ ^1\text{H-NMR} \ (300\ \text{MHz},\ \text{CDCl}_3): \ \delta_{\rm H} &= 9.57 \ (\text{d},\ J\ =\ 0.8\ \text{Hz},\ 1\text{H}), \\ 7.39-7.21 \ (\text{m},\ 5\text{H}),\ 4.58 \ (\text{ddd},\ J\ =\ 10.2,\ 3.9,\ 0.7\ \text{Hz},\ 1\text{H}),\ 4.47 \ (\text{d},\ J\ =\ 1.1\ \text{Hz},\ 2\text{H}),\ 3.95 \ (\text{dd},\ J\ =\ 5.9,\ 1.3\ \text{Hz},\ 1\text{H}),\ 3.30 \ (\text{dd},\ J\ =\ 10.5,\ 6.7\ \text{Hz},\ 1\text{H}),\ 3.17 \ (\text{dd},\ J\ =\ 10.5,\ 7.1\ \text{Hz},\ 1\text{H}),\ 2.40 \ (\text{ddd},\ J\ =\ 13.0,\ 10.3,\ 5.9\ \text{Hz},\ 1\text{H}),\ 2.26 \ (\text{ddd},\ J\ =\ 13.0,\ 4.0,\ 0.6\ \text{Hz},\ 1\text{H}),\ 1.53 \ (\text{tdd},\ J\ =\ 5.8,\ 4.0,\ 0.6\ \text{Hz},\ 1\text{H}),\ 0.97 \ (\text{tdd},\ J\ =\ 6.9,\ 3.9,\ 1.3\ \text{Hz},\ 1\text{H});\ ^{13}\text{C-NMR} \ (75\ \text{MHz},\ \text{CDCl}_3):\ \delta_{\rm C}\ =\ 204.38\ (+),\ 138.19\ (\text{Cq}),\ 128.54 \ (+),\ 127.81\ (+),\ 127.77\ (+),\ 86.02\ (+),\ 72.77\ (-),\ 69.06\ (-),\ 64.86 \ (+),\ 31.08\ (-),\ 25.84\ (+),\ 20.30\ (+);\ \text{IR} \ (\text{ATR}):\ \tilde{\nu}\ (\text{cm}^{-1})\ =\ 3031,\ 2942,\ 2860,\ 1730,\ 1497,\ 1455,\ 1422,\ 1362,\ 1091,\ 1076,\ 1030,\ 988,\ 738,\ 699;\ \text{MS}\ (\text{EI}:\ m/z\ (\%)\ =\ 91.1\ (100)\ [\text{C}_7\text{H}_7^+],\ 231.1\ (<1) \end{split}$$

 $[M^{+}\Delta H^{+}]$; HRMS (ESI): calcd for $C_{14}H_{20}NO_3$ $[MNH_4^{+}]$ 250.1438, found 250.1439.

Preparation of 5-((1*S***,3***R***,5***S***,6***R***)-6-(benzyloxymethyl)-2-oxabicyclo[3.1.0]hexan-3-yl)-4-tosyl-4,5-dihydro-oxazole (23). Finely powdered NaCN (28 mg, 0.57 mmol, 0.22 equiv.) was added in one portion to a stirred solution of TosMIC (555 mg, 2.84 mmol, 1.1 equiv.) and aldehyde 22 (600 mg, 2.58 mmol) in anhydrous EtOH (25 mL) at room temperature under a nitrogen atmosphere. The reaction mixture was stirred for 2 h. The solvent was evaporated under reduced pressure. The residue was dissolved in CHCl₃ (30 mL) and washed with a saturated aqueous NaHCO₃ solution (30 mL). The aqueous layer was extracted with CHCl₃ (2 × 15 mL) and the combined organic layers were dried over MgSO₄, filtered and concentrated** *in vacuo***. Purification by column chromatography (PE–EtOAc 1 : 1) afforded a 3 : 2 diastereomeric mixture of compound 23** (854 mg, 2.00 mmol, 77%) as yellowish foam.

Major: $R_{\rm f}$ = 0.41 (PE–EtOAc 1:1); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 7.81 (d, J = 8.3 Hz, 2H), 7.39–7.33 (m, 2H), 7.34–7.20 (m, 5H), 7.00–6.96 (m, 1H), 4.94–4.91 (m, 1H), 4.92–4.89 (m, 1H), 4.62–4.52 (m, 1H), 4.51–4.45 (m, 2H), 3.79 (dd, J = 6.2, 0.9 Hz, 1H), 3.31 (dd, J = 10.5, 6.5 Hz, 1H), 3.11 (dd, J = 10.5, 7.3 Hz, 1H), 2.44 (s, 3H), 2.40–2.20 (m, 1H), 1.81 (ddd, J = 13.3, 8.8, 1.3 Hz, 1H), 1.65–1.53 (m, 1H), 1.30–1.18 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 159.28 (+), 145.62 (C_q), 138.15 (C_q), 133.09 (C_q), 129.89 (+), 129.60 (+), 128.47 (+), 127.75 (+), 127.71 (+), 86.80 (+), 86.36 (+), 79.63 (+), 72.70 (-), 69.00 (-), 64.69 (+), 33.03 (+), 30.85 (-), 22.12 (+), 21.79 (+).

Minor: $R_{\rm f}$ = 0.41 (PE–EtOAc 1:1); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 7.80 (d, J = 8.3 Hz, 2H), 7.39–7.33 (m, 2H), 7.34–7.20 (m, 5H), 7.00–6.96 (m, 1H), 4.98 (dd, J = 6.2, 1.7 Hz, 1H), 4.84 (dd, J = 6.2, 3.4 Hz, 1H), 4.58–4.50 (m, 1H), 4.47–4.42 (m, 2H), 3.76 (dd, J = 6.3, 0.8 Hz, 1H), 3.26 (dd, J = 10.5, 6.8 Hz, 1H), 3.14 (dd, J = 10.5, 7.2 Hz, 1H), 2.44 (s, 3H), 2.43–2.33 (m, 1H), 2.01 (ddd, J = 13.0, 8.4, 1.6 Hz, 1H), 1.65–1.53 (m, 1H), 1.30–1.18 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 159.35 (+), 145.62 (C_q), 138.19 (C_q), 133.09 (C_q), 129.89 (+), 129.52 (+), 128.45 (+), 127.75 (+), 127.71 (+), 87.66 (+), 87.31 (+), 79.13 (+), 72.63 (-), 69.04 (-), 64.92 (+), 32.83 (+), 31.19 (-), 22.12 (+), 21.79 (+).

Data for the isomeric mixture: IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3033, 2948, 2861, 1616, 1597, 1486, 1455, 1362, 1319, 1304, 1292, 1148, 1108, 1086, 1071, 1028, 939, 848, 813, 739, 700, 664, 651, 587, 533.

Preparation of 5-((1*S*,3*R*,5*S*,6*R*)-6-(benzyloxymethyl)-2-oxabicyclo[3.1.0]hexan-3-yl)-1*H*-imidazole (24a) and 5-((1*S*,3*S*,5*S*,6*R*)-6-(benzyloxymethyl)-2-oxabicyclo[3.1.0]hexan-3-yl)-1*H*-imidazole (24b). In a sealable pressure tube, oxazoline 23 (1.70 g, 3.98 mmol) and a saturated solution of NH₃ in anhydrous MeOH (40 mL, 70 equiv.) were heated at 95 °C for 16 h. Within this time the solution turned red. After cooling, the solvent was removed under reduced pressure. The residue was purified by column chromatography (DCM-saturated NH₃ in MeOH 9:1) to give a 5:1 epimeric mixture of compounds 24a and 24b (726 mg, 2.69 mmol, 68%) as a colorless oil.

24a: $R_{\rm f} = 0.22$ (DCM-saturated NH₃ in MeOH 9 : 1); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H} = 8.28$ (br s, 1H), 7.48 (s, 1H), 7.38-7.22 (m, 5H), 6.83 (s, 1H), 5.42 (t, *J* = 7.5 Hz, 1H), 4.47 (d, *J* = 1.7 Hz, 2H), 3.86 (dd, *J* = 6.2, 1.2 Hz, 1H), 3.29-3.15 (m, 2H), 2.64-2.51 (m, 1H), 2.15 (ddd, *J* = 12.8, 7.0, 1.4 Hz, 1H), 1.66-1.57 (m, 1H), 1.45-1.34 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C} = 139.57$ (C_q), 138.27 (C_q), 135.36 (+), 128.54 (+), 127.87 (+), 127.80 (+), 116.10 (+), 81.53 (+), 72.69 (-), 69.71 (-), 64.45 (+), 35.21 (-), 30.89 (+), 22.67 (+).

24b: $R_{\rm f} = 0.22$ (DCM-saturated NH₃ in MeOH 9 : 1); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H} = 8.28$ (br s, 1H), 7.55 (s, 1H), 7.38–7.22 (m, 5H), 6.90 (s, 1H), 4.76 (t, *J* = 8.2 Hz, 1H), 4.50 (d, *J* = 2.6 Hz, 2H), 3.90–3.78 (m, 1H), 3.42–3.31 (m, 1H), 3.23–3.11 (m, 1H), 2.38–2.23 (m, 2H), 1.59–1.48 (m, 1H), 1.19–1.05 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C} = 138.22$ (C_q), 137.81 (C_q), 135.62 (+), 128.54 (+), 127.86 (+), 127.80 (+), 115.90 (+), 74.14 (+), 72.72 (-), 69.90 (-), 62.56 (+), 34.54 (-), 21.40 (+), 20.80 (+).

Data for the isomeric mixture: IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3090 (br), 2936, 2858, 1716, 1670, 1496, 1453, 1362, 1313, 1273, 1087, 1071, 1027, 839, 738, 698, 626; MS (ESI): m/z (%) = 271.0 (100) [MH⁺], 312.1 (30) [MH⁺MeCN], 541.2 (40) [2MH⁺]; HRMS (ESI): calcd for C₁₆H₁₉N₂O₂ [MH⁺] 271.1441, found 271.1446.

Preparation of ethyl 5-((1S,3R,5S,6R)-6-(benzyloxymethyl)-2oxabicyclo[3.1.0]hexan-3-yl)-1H-imidazole-1-carboxylate (25a) and ethyl 5-((1S,3S,5S,6R)-6-(benzyloxymethyl)-2-oxabicyclo-[3.1.0]hexan-3-yl)-1H-imidazole-1-carboxylate (25b). A solution of a 3:1 epimeric mixture of imidazole 24a and 24b (1.10 g, 4.06 mmol), ethyl chloroformate (733 µL, 7.72 mmol, 1.9 equiv.), anhydrous pyridine (623 µL, 7.72 mmol, 1.9 equiv.) and DMAP (79 mg, 0.65 mmol, 0.16 equiv.) in benzene (80 mL) was stirred for 10 min at 50 °C. After the addition of water (5 mL), the solvent was evaporated. A saturated aqueous NH₄Cl solution (50 mL) was added and extracted with DCM (3 × 25 mL). The extract was washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The residual oil was purified by column chromatography (PE-EtOAc 1:1) to give a 3:1 epimeric mixture of compounds 25a and 25b (1.01 g, 2.95 mmol, 73%) as a colorless oil.

25a: $R_{\rm f} = 0.26$ (PE–EtOAc 1 : 1); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H} = 8.06$ (d, J = 1.3 Hz, 1H), 7.37–7.27 (m, 5H), 7.28 (t, J = 1.2 Hz, 1H), 5.38 (ddd, J = 8.4, 6.7, 0.9 Hz, 1H), 4.48 (d, J = 3.8 Hz, 2H), 4.45 (q, J = 7.1 Hz, 2H), 3.88 (dd, J = 6.1, 1.2 Hz, 1H), 3.33 (dd, J = 10.5, 6.7 Hz, 1H), 3.13 (dd, J = 10.6, 7.4 Hz, 1H), 2.61 (ddd, J = 12.8, 8.6, 6.9 Hz, 1H), 2.15 (ddd, J = 12.8, 6.7, 1.4 Hz, 1H), 1.67–1.57 (m, 1H), 1.47–1.39 (m, 1H), 1.42 (t, J = 7.1 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C} = 148.63$ (C_q), 145.81 (C_q), 138.32 (C_q), 137.17 (+), 128.41 (+), 127.70 (+), 127.26 (+), 113.26 (+), 81.75 (+), 72.52 (-), 69.50 (-), 64.68 (+), 64.45 (-), 43.88 (-), 30.63 (+), 22.66 (+), 14.21 (+).

25b: $R_{\rm f} = 0.24$ (PE–EtOAc 1:1), 0.54 (EtOAc); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H} = 8.07$ (d, J = 1.3 Hz, 1H), 7.35–7.26 (m, 5H), 7.33–7.31 (m, 1H), 4.72 (dd, J = 8.8, 7.4 Hz, 1H), 4.49 (d, J = 3.1 Hz, 2H), 4.43 (q, J = 7.1 Hz, 2H), 3.91 (dd, J = 5.5, 1.6 Hz, 1H), 3.38 (dd, J = 10.5, 6.2 Hz, 1H), 3.13 (dd, J = 10.5, 7.5 Hz, 2H), 2.35 (dd, J = 12.3, 7.3 Hz, 1H), 2.24 (ddd, J = 12.4,

9.0, 5.0 Hz, 1H), 1.59–1.50 (m, 2H), 1.40 (t, J = 7.1 Hz, 3H); $^{13}\text{C-NMR}$ (75 MHz, CDCl₃): $\delta_{\rm C}$ = 148.58 (C_q), 143.45 (C_q), 138.34 (C_q), 137.26 (+), 128.44 (+), 127.72 (+), 127.67 (+), 113.85 (+), 74.88 (+), 72.58 (-), 69.71 (-), 64.49 (-), 62.91 (+), 34.52 (-), 22.14 (+), 20.86 (+), 14.21 (+).

Data for isomeric mixture: IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3032, 2937, 2859, 1759, 1482, 1454, 1409, 1388, 1336, 1252, 1207, 1093, 1069, 1019, 843, 769, 740, 699, 607; MS (ESI): m/z (%) = 342.9 (100) [MH⁺]; HRMS (ESI): calcd for C₁₉H₂₃N₂O₄ [MH⁺] 343.1652, found 343.1656.

Preparation of ethyl 5-((1S,3R,5S,6R)-6-(hydroxymethyl)-2oxabicyclo[3.1.0]hexan-3-yl)-1H-imidazole-1-carboxylate (26a) and ethyl 5-((1S,3S,5S,6R)-6-(hydroxymethyl)-2-oxabicyclo-[3.1.0]hexan-3-yl)-1H-imidazole-1-carboxylate (26b). A 3:1 epimeric mixture of compounds 25a and 25b (134 mg, 0.39 mmol), Pd(OH)₂-C (20%, 95 mg) and cyclohexene (1.6 mL, 16 mmol, 40 equiv.) in anhydrous EtOH (15 mL) was refluxed for 1 h. After filtration through a Celite pad the solvent was evaporated. The residue was purified by column chromatography (EtOAc, then EtOAc-MeOH 19:1) to afford a 3:1 epimeric mixture of alcohol 26a and 26b (72 mg, 0.29 mmol, 73%) as a colorless foam. Separation of the epimers by iterated chromatography.

26a: $R_{\rm f} = 0.38$ (EtOAc–MeOH 19:1); $[\alpha]_{\rm D}^{20} = -4.6$ (DCM, c = 1.0); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H} = 8.06$ (d, J = 1.3 Hz, 1H), 7.29 (m, 1H), 5.38 (ddd, J = 8.5, 6.6, 0.9 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 3.90 (dd, J = 6.2, 1.3 Hz, 1H), 3.40 (dd, J = 11.6, 7.4 Hz, 1H), 3.33 (dd, J = 11.6, 7.3 Hz, 1H), 2.61 (ddd, J = 12.8, 8.6, 6.9 Hz, 1H), 2.16 (ddd, J = 12.8, 6.7, 1.5 Hz, 1H), 1.75 (br s, 1H), 1.62 (tdd, J = 6.8, 4.0, 1.5 Hz, 1H), 1.50–1.43 (m, 1H), 1.42 (t, J = 7.1 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C} = 148.69$ (C_q), 145.65 (C_q), 137.31 (+), 113.54 (+), 81.81 (+), 64.60 (-), 64.51 (+), 62.61 (-), 34.83 (-), 33.45 (+), 22.44 (+), 14.30 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3373 (br), 2982, 2943, 2876, 1758, 1489, 1409, 1336, 1253, 1176, 1103, 1068, 1018, 847, 768, 606; MS (ESI): m/z (%) = 252.9 (40) [MH⁺], 294.0 (15) [MH⁺MeCN], 505.1 (100) [2MH⁺]; HRMS (ESI): calcd for C₁₂H₁₇N₂O₄ [MH⁺] 253.1183, found 253.1190.

26b: $R_{\rm f} = 0.36$ (EtOAc–MeOH 19:1); $[\alpha]_{\rm D}^{20} = +10.5$ (DCM, c = 1.0); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H} = 8.05$ (d, J = 1.2 Hz, 1H), 7.32–7.29 (m, 1H), 4.70 (dd, J = 8.6, 7.5 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 3.91 (dd, J = 5.5, 1.6 Hz, 1H), 3.41 (dd, J = 11.5, 6.8 Hz, 1H), 3.32 (dd, J = 11.5, 7.1 Hz, 1H), 2.32 (dd, J = 12.4, 7.2 Hz, 1H), 2.21 (ddd, J = 12.4, 9.0, 5.0 Hz, 1H), 1.58–1.47 (m, 2H), 1.38 (t, J = 7.1 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C} = 148.66$ (C_q), 143.43 (C_q), 137.38 (+), 113.98 (+), 75.10 (+), 64.64 (-), 62.86 (-), 62.42 (+), 34.59 (-), 24.90 (+), 20.54 (+), 14.30 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3349 (br), 2939, 2869, 1760, 1487, 1409, 1342, 1254, 1123, 1018, 852, 768, 607; MS (ESI): m/z (%) = 252.8 (100) [MH⁺], 505.1 (30) [2MH⁺]; HRMS (ESI): calcd for C₁₂H₁₇N₂O₄ [MH⁺] 253.1183, found 253.1188.

Preparation of ethyl 5-((1S,3R,5S,6R)-6-((1,3-dioxoisoindolin-2-yl)methyl)-2-oxabicyclo[3.1.0]hexan-3-yl)-1H-imidazole-1-carboxylate (27a), ethyl 5-((2R,4S,5R)-5-(1,3-dioxoisoindolin-2-yl)-4-vinyltetrahydrofuran-2-yl)-1H-imidazole-1-carboxylate (28a) and ethyl 5-((2R,4S,5S)-5-(1,3-dioxoisoindolin-2-yl)-4**Organic & Biomolecular Chemistry**

vinyltetrahydrofuran-2-yl)-1*H*-imidazole-1-carboxylate (28b). DIAD (211 mg, 0.98 mmol, 1.5 equiv.) was added to a solution of PPh₃ (257 mg, 0.98 mmol, 1.5 equiv.) in anhydrous THF (7 mL) at room temperature under a nitrogen atmosphere. After stirring for 10 min phthalimide (144 mg, 0.98 mmol, 1.5 equiv.) was added and stirred for another 10 min. After addition of alcohol **26a** (165 mg, 0.65 mmol) in THF the reaction mixture was stirred overnight. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography (PE–EtOAc 5:1 to EtOAc) to obtain **28a** (126 mg, 0.33 mmol, 51%), **28b** (25 mg, 0.07 mmol, 10%) and **27a** (72 mg, 0.19 mmol, 29%) as colorless oils.

28a: $R_{\rm f} = 0.37$ (PE-EtOAc 1:1); $[\alpha]_{\rm D}^{20} = -23.6$ (DCM, c = 1.0); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 8.10 (d, J = 1.2 Hz, 1H), 7.85 (dd, J = 5.5, 3.0 Hz, 2H), 7.72 (dd, J = 5.5, 3.0 Hz, 2H), 7.40 (dd, *J* = 1.3, 0.7 Hz, 1H), 5.93 (d, *J* = 7.5 Hz, 1H), 5.86 (ddd, *J* = 17.1, 10.3, 8.0 Hz, 1H), 5.50 (dd, J = 10.6, 4.9 Hz, 1H), 5.13 (dt, J = 17.1, 1.2 Hz, 1H), 5.10–5.04 (m, 1H), 4.44 (q, J = 7.1 Hz, 2H), 4.01-3.85 (m, 1H), 2.65 (ddd, J = 12.2, 7.2, 5.0 Hz, 1H), 2.24 (dt, J = 12.2, 11.3 Hz, 1H), 1.41 (t, J = 7.1 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 167.92 (C_q), 148.63 (C_q), 143.33 (C_q), 137.37 (+), 136.39 (+), 134.37 (+), 132.02 (C_q), 123.60 (+), 117.58 (-), 114.40 (+), 85.06 (+), 76.33 (+), 64.59 (-), 46.68 (+), 39.34 (-), 14.27 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2985, 2927, 2853, 1760, 1716, 1468, 1410, 1367, 1332, 1252, 1210, 1084, 1019 977, 919, 891, 845, 769, 736, 721, 655, 611, 531; MS (ESI): m/z (%) = 381.9 (100) [MH⁺], 422.9 (45) [MH⁺MeCN], 763.2 (90) [2MH⁺]; HRMS (ESI): calcd for $C_{20}H_{20}N_3O_5\ [\text{MH}^+]$ 382.1375, found 382.1365.

28b: $R_{\rm f} = 0.33$ (PE–EtOAc 1 : 1); $[\alpha]_{\rm D}^{20} = +73.6$ (DCM, c = 0.5); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H} = 8.09$ (d, J = 1.3 Hz, 1H), 7.83 (dd, J = 5.5, 3.0 Hz, 2H), 7.72 (dd, J = 5.5, 3.0 Hz, 2H), 7.61–7.53 (m, 1H), 6.21 (d, J = 8.6 Hz, 1H), 5.69 (ddd, J = 17.5, 10.2, 7.5 Hz, 1H), 5.20 (dt, J = 17.2, 1.3 Hz, 1H), 5.11–5.04 (m, 1H), 5.06–5.00 (m, 1H), 4.46 (q, J = 7.1 Hz, 2H), 3.56–3.41 (m, 1H), 2.93–2.77 (m, 1H), 2.51–2.40 (m, 1H), 1.42 (t, J = 7.1 Hz, 3H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C} = 167.77$ (C_q), 148.78 (C_q), 143.44 (C_q), 136.78 (+), 134.30 (+), 133.84 (+), 131.98 (C_q), 123.61 (+), 118.82 (-), 114.31 (+), 82.69 (+), 77.63 (+), 64.53 (-), 47.93 (+), 36.93 (-), 14.33 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2985, 2955, 2925, 1762, 1720, 1468, 1410, 1364, 1326, 1258, 1228, 1113, 1090, 1018, 901, 838, 792, 770, 722, 604, 530; MS (ESI): m/z (%) = 381.9 (100) [MH⁺], 763.2 (10) [2MH⁺]; HRMS (ESI): calcd for C₂₀H₂₀N₃O₅ [MH⁺] 382.1397, found 382.1403.

27a: $R_{\rm f} = 0.27$ (PE–EtOAc 1 : 1); $[\alpha]_D^{20} = -12.4$ (DCM, c = 1.0); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H} = 8.03$ (d, J = 1.2 Hz, 1H), 7.83 (dd, J = 5.5, 3.0 Hz, 2H), 7.70 (dd, J = 5.5, 3.0 Hz, 2H), 7.24 (t, J = 1.0 Hz, 1H), 5.36 (t, J = 7.7 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H), 4.05 (dd, J = 6.2, 0.9 Hz, 1H), 3.51 (dd, J = 14.3, 7.1 Hz, 1H), 3.38 (dd, J = 14.3, 8.2 Hz, 1H), 2.59 (ddd, J = 12.9, 8.4, 7.1 Hz, 1H), 2.07 (ddd, J = 12.7, 7.2, 1.6 Hz, 1H), 1.76 (ddd, J = 7.0, 3.9, 1.5 Hz, 1H), 1.57–1.48 (m, 1H), 1.40 (t, J = 7.1 Hz, 3H), 1.30–1.20 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C} = 168.45$ (C_q), 148.65 (C_q), 145.26 (C_q), 137.27 (+), 134.06 (C_q), 132.31 (+), 123.37 (+), 113.43 (+), 82.36 (+), 65.09 (+), 64.54 (-), 38.00 (-), 35.03 (-), 30.67 (+), 23.63 (+), 14.28 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2977, 2931, 1760, 1711, 1467, 1433, 1409, 1391, 1357, 1336, 1253, 1211, 1137, 1102, 1019, 950, 846, 769, 721, 614, 530; MS (ESI): m/z (%) = 381.9 (100) [MH⁺], 763.3 (75) [2MH⁺]; HRMS (ESI): calcd for $C_{20}H_{20}N_3O_5$ [MH⁺] 382.1397, found 382.1396.

Preparation of ethyl 5-((1S,3S,5S,6R)-6-((1,3-dioxoisoindolin-2-yl)methyl)-2-oxabicyclo[3.1.0]hexan-3-yl)-1H-imidazole-1-carboxylate (27b). DIAD (54 mg, 0.25 mmol, 1.5 equiv.) was added to a solution of PPh₃ (65.5 mg, 0.25 mmol, 1.5 equiv.) in anhydrous THF (1.3 mL) at room temperature under a nitrogen atmosphere. After stirring for 10 min phthalimide (37 mg, 0.25 mmol, 1.5 equiv.) was added and stirred for another 10 min. After addition of alcohol **26b** (42 mg, 0.17 mmol) the reaction mixture was stirred for 18 h. The solvent was evaporated under reduced pressure. The residue was purified by column chromatography (PE–EtOAc 3:1 to 1:1) to obtain compound **27b** (17 mg, 0.04 mmol, 27%) as a colorless oil.

$$\begin{split} R_{\rm f} &= 0.43 ~(\text{PE-EtOAc}~1:3); ~[\alpha]_{2}^{20} &= +17.1 ~(\text{DCM},~c = 0.2); \\ ^{1}\text{H-NMR} ~(400 ~\text{MHz}, ~\text{CDCl}_3): ~\delta_{\rm H} &= 8.07 ~(\text{d},~J = 1.3 ~\text{Hz},~1\text{H}), \\ 7.90-7.82 ~(\text{m},~2\text{H}), ~7.76-7.67 ~(\text{m},~2\text{H}), ~7.30 ~(\text{s},~1\text{H}), 4.68 ~(\text{t},~J = 8.0 ~\text{Hz},~1\text{H}), 4.45 ~(\text{q},~J = 7.1 ~\text{Hz},~2\text{H}), 4.11 ~(\text{dd},~J = 5.7,~1.2 ~\text{Hz}, \\ 1\text{H}), ~3.54 ~(\text{dd},~J = 14.2,~6.9 ~\text{Hz},~1\text{H}), ~3.42 ~(\text{dd},~J = 14.3,~7.8 ~\text{Hz}, \\ 1\text{H}), ~2.36-2.19 ~(\text{m},~2\text{H}), ~1.73-1.62 ~(\text{m},~1\text{H}), ~1.48-1.38 ~(\text{m},~1\text{H}), \\ 1.41 ~(\text{t},~J = 7.1 ~\text{Hz},~3\text{H}); ~^{13}\text{C-NMR} ~(101 ~\text{MHz},~\text{CDCl}_3): ~\delta_{\rm C} = 168.50 ~(\text{Cq}), ~148.68 ~(\text{Cq}), ~143.44 ~(\text{Cq}), ~137.38 ~(+), ~134.12 ~(+), ~132.33 ~(\text{Cq}), 123.43 ~(+), ~113.93 ~(+), ~75.15 ~(+), ~64.59 ~(-), ~63.38 ~(+), ~38.09 ~(-), ~34.48 ~(-), ~21.89 ~(+), ~21.56 ~(+), ~14.30 ~(+); ~\text{IR} ~(\text{ATR}): ~\tilde{\nu} ~(\text{cm}^{-1}) \\ = ~2978, ~2936, ~2873, ~1758, ~1707, ~1467, ~1391, ~1336, ~1251, ~1139, \\ 1087, ~1017, ~944, ~850, ~769, ~721, ~611, ~541, ~501; ~\text{MS} ~(\text{ESI}): ~m/z ~(\%) \\ = ~381.9 ~(100) ~[\text{MH}^+], ~763.3 ~(10) ~[\text{2MH}^+]; ~\text{HRMS} ~(\text{ESI}): ~\text{calcd for} \\ C_{20}H_{20}N_3O_5 ~[\text{MH}^+] ~382.1397, ~\text{found}~382.1405. \\ \end{split}$$

Preparation of 2-(((1S,3R,5S,6R)-3-((tert-butyldimethylsilyloxy)methyl)-2-oxabicyclo[3.1.0]hexan-6-yl)-methyl)isoindoline-1,3-dione (30), 2-((2R,3S,5R)-5-((tert-butyldimethylsilyloxy)methyl)-3-vinyltetra-hydrofuran-2-yl)isoindoline-1,3-dione (31a), 2-((2S,3S,5R)-5-((tert-butyldimethylsilyloxy)-methyl)-3-vinyltetrahydrofuran-2-yl)isoindoline-1,3-dione (31b), and (R)-tert-butyldimethyl((4-vinyl-2,3-dihydrofuran-2-yl)methoxy)silane (32). DIAD (1.58 g, 8.72 mmol, 1.5 equiv.) was added dropwise to a solution of alcohol 19 (1.50 g, 5.82 mmol), PPh₃ (2.29 g, 8.72 mmol, 1.5 equiv.) and phthalimide (1.28 mg, 8.72 mmol, 1.5 equiv.) in anhydrous THF (116 mL) at 50 °C. After stirring at 50 °C for 1 h the mixture was cooled to room temperature quenched with water (50 mL). The phases were separated and the organic layer was extracted with DCM (3 \times 25 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography (PE-EtOAc 9:1, then 5:1) to obtain compound 32 (100 mg, 0.42 mmol, 7%) as a colorless oil and compound 31b (115 mg, 0.30 mmol, 5%), compound 31a (1.04 g, 2.67 mmol, 46%) and compound 30 (665 mg, 1.72 mmol, 29%) as colorless solids.

32: $R_{\rm f} = 0.59$ (PE-EtOAC 9:1); $[\alpha]_{\rm D}^{20} = -125.8$ (DCM, c = 1.0); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H} = 6.46$ (ddd, J = 18.0, 11.0, 0.6 Hz, 1H), 6.41 (m, 1H), 4.85 (dd, J = 10.7, 1.1 Hz, 1H), 4.85-4.76 (m, 1H), 4.70 (dddd, J = 10.5, 7.3, 5.9, 4.9 Hz, 1H), 3.73 (dd, J = 10.9, 5.9 Hz, 1H), 3.65 (dd, J = 10.9, 4.8 Hz, 1H), 2.73 (dddd, J = 14.4, 10.4, 1.8, 0.7 Hz, 1H), 2.48 (dddd, J = 14.6, 7.3, 1.7, 0.6 Hz, 1H), 0.89 (s, 9H), 0.07 (s, 3H), 0.07 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 144.97 (+), 129.08 (+), 116.31 (C_q), 109.70 (-), 83.00 (+), 65.64 (-), 30.71 (-), 26.01 (+), 18.50 (C_q), -5.14 (+), -5.19 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2955, 2929, 2857, 1641, 1472, 1463, 1253, 1105, 1006, 980, 834, 776, 667.

31b: $R_{\rm f} = 0.40$ (PE-EtOAc 5:1); $[\alpha]_{\rm D}^{20} = +95.5$ (DCM, c = 0.5); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 7.83 (dd, J = 5.6, 3.0 Hz, 2H), 7.72 (dd, J = 5.6, 3.0 Hz, 2H), 6.13 (d, J = 8.4 Hz, 1H), 5.62 (ddd, J = 17.5, 10.2, 7.5 Hz, 1H), 5.15 (dt, J = 17.1, 1.4 Hz, 1H), 4.99 (ddd, J = 10.2, 1.5, 1.0 Hz, 1H), 4.18 (ddt, J = 10.7, 6.5, 5.2 Hz, 1H), 3.97 (dd, J = 10.5, 6.6 Hz, 1H), 3.82 (dd, J = 10.5, 4.9 Hz, 1H), 3.41-3.26 (m, 1H), 2.39 (dt, J = 12.1, 11.2 Hz, 1H), 2.13 (ddd, J = 11.7, 7.6, 5.5 Hz, 1H), 0.89 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 167.89 (C_a), 134.26 (+), 134.12 (+), 131.99 (C_q), 123.50 (+), 118.46 (-), 83.27 (+), 82.56 (+), 65.93 (-), 47.39 (+), 34.02 (-), 26.14 (+), 18.62 (C_q), -5.04 (+), -5.11 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2956, 2928, 2857, 1787, 1772, 1720, 1470, 1416, 1370, 1351, 1327, 1255, 1117, 1101, 1059, 1005, 924, 891, 838, 777, 720; MS (ESI): m/z (%) = 388.0 (100) [MH⁺], 729.4 (15) [2MH⁺]; HRMS (ESI): calcd for C₂₁H₃₀NO₄Si [MH⁺] 388.1939, found 388.1941.

31a: $R_{\rm f} = 0.38$ (PE-EtOAc 5:1); $[\alpha]_{\rm D}^{20} = -41.5$ (DCM, c = 1.0); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 7.84 (dd, *J* = 5.6, 3.0 Hz, 2H), 7.72 (dd, J = 5.6, 3.0 Hz, 2H), 5.79 (ddd, J = 17.1, 10.2, 8.0 Hz, 1H), 5.74 (d, J = 7.6 Hz, 1H), 5.09 (dt, J = 17.7, 1.4 Hz, 1H), 5.04 (ddd, J = 7.9, 1.4, 0.9 Hz, 1H), 4.53 (dq, J = 5.2, 4.1 Hz, 6H),3.87-3.73 (m, 7H), 3.73 (dd, J = 11.0, 4.2 Hz, 10H), 3.67 (dd, J = 11.0, 4.4 Hz, 1H), 2.35 (ddd, J = 12.6, 7.6, 5.3 Hz, 1H), 1.89 (ddd, J = 12.2, 11.1, 10.1 Hz, 1H), 0.90 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 167.95 (C_a), 136.90 (+), 134.31 (+), 132.06 (C_q), 123.57 (+), 117.25 (-), 85.23 (+), 80.85 (+), 65.07 (-), 46.15 (+), 35.26 (-), 26.08 (+), 18.51 (C_q), -5.10 (+), -5.21 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2954, 2929, 2857, 1775, 1717, 1470, 1405, 1368, 1328, 1253, 1084, 996, 921, 872, 836, 777, 718, 665, 530; MS (ESI): m/z (%) = 388.0 (70) [MH⁺], 405.0 (70) [MNH₄⁺], 775.4 (20) [2MH⁺], 792.4 (100) [2MNH₄⁺]; HRMS (ESI): calcd for C₂₁H₃₀NO₄Si [MH⁺] 388.1939, found 388.1942.

30: mp = 63–65 °C; $R_{\rm f}$ = 0.25 (PE–EtOAc 5 : 1); $[\alpha]_{\rm D}^{20}$ = +28.9 (DCM, c = 1.0); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 7.79 (dd, J = 5.5, 3.0 Hz, 2H), 7.67 (dd, J = 5.4, 3.1 Hz, 2H), 4.46–4.34 (m, 1H), 3.89 (dd, J = 6.2, 0.6 Hz, 1H), 3.47 (dd, J = 14.3, 6.9 Hz, 1H), 3.41 (d, J = 4.9 Hz, 2H), 3.28 (dd, J = 14.3, 8.4 Hz, 1H), 2.20 (ddd, J = 12.7, 8.1, 7.3 Hz, 1H), 1.70–1.53 (m, 2H), 1.36–1.25 (m, 1H), 0.82 (s, 9H), -0.02 (s, 6H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 168.28 (C_q), 133.94 (+), 132.23 (C_q), 123.22 (+), 87.79 (+), 65.97 (-), 64.86 (+), 37.87 (-), 31.45 (-), 31.13 (+), 25.97 (+), 23.09 (+), 18.42 (C_q), -5.30 (+), -5.31 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 2955, 2929, 2856, 1772, 1712, 1468, 1433, 1391, 1356, 1330, 1253, 1188, 1137, 1088, 1007, 990, 950, 836, 777, 720, 529; MS (ESI): m/z (%) = 388.1 (50) [MH⁺], 405.0 (100) [MNH₄⁺]; HRMS (ESI): calcd for C₂₁H₃₀NO₄Si [MH⁺] 388.1939, found 388.1940.

Preparation of (1*S***,3***R***,5***S***,6***S***)-methyl 3-(oxazol-5-yl)-2-oxabicyclo[3.1.0]hexane-6-carboxylate (33). To a solution of oxazoline 16 (396 mg, 1.04 mmol) in anhydrous MeOH (10 mL), K₂CO₃** (289 mg, 2.09 mmol, 2 equiv.) was added under a nitrogen atmosphere. The reaction mixture was refluxed for 30 min, quenched with water (15 mL) and extracted with DCM (3×15 mL). The combined organic layers were dried over MgSO₄, filtrated and concentrated *in vacuo*. Purification by column chromatography (PE–EtOAc 1:1) afforded compound 33 (67 mg, 0.32 mmol, 31%) as a colorless solid.

Mp = 61 °C; $R_{\rm f}$ = 0.36 (PE–EtOAc 1 : 3); $[\alpha]_{\rm D}^{20}$ = +30.6 (DCM, c = 1.0); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 7.84 (s, 1H), 6.97 (s, 1H), 5.47 (dd, J = 9.4, 6.1 Hz, 1H), 4.30 (dd, J = 5.9, 0.6 Hz, 1H), 3.65 (s, 3H), 2.72 (ddd, J = 13.4, 9.5, 6.6 Hz, 1H), 2.37–2.30 (m, 1H), 2.26 (ddd, J = 13.5, 6.1, 0.7 Hz, 1H), 1.98 (dd, J = 3.9, 0.9 Hz, 1H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 170.80 (C_q), 151.63 (C_q), 151.51 (+), 124.18 (+), 77.16 (+), 67.36 (+), 51.89 (+), 33.00 (-), 31.18 (+), 27.25 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3435 (br), 3129, 2954, 1716, 1507, 1440, 1394, 1311, 1274, 1198, 1171, 1107, 1070, 963, 860, 715; MS (EI): m/z (%) = 95.0 (100), 180.1 (39) [M⁺ΔCHO], 209.1 (<1) [M⁺⁻]; HRMS (EI): calcd for C₁₀H₁₁NO₄ [M⁺⁻] 209.0688, found 209.0694.

Preparation of (15,3*R*,5*S*,6*R*)-3-(oxazol-5-yl)-2-oxabicyclo-[3.1.0]hexan-6-yl)methanol (34). To a stirred ice-cooled solution of oxazole 33 (65 mg, 0.31 mmol) in anhydrous THF (3 mL) under a nitrogen atmosphere, LAH (9.3 mg, 0.25 mmol, 0.8 equiv.) was added in small portions within 5 min. The reaction mixture was stirred for 30 min at 0 °C. After addition of water (10 μ L) the mixture was stirred for another 30 min. Then a 15% aqueous NaOH solution (10 μ L) was added followed by water (30 μ L). The mixture was warmed to room temperature, treated with MgSO₄ and filtered through a Celite pad. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (EtOAc) to obtain compound 34 (40 mg, 0.22 mmol, 71%) as a colorless solid.

$$\begin{split} &\text{Mp}=95\ ^{\circ}\text{C};\ R_{\rm f}=0.19\ (\text{EtOAc});\ [\alpha]_{\rm D}^{20}=+25.8\ (\text{DCM},\ c=1.0);\\ ^{1}\text{H-NMR}\ (400\ \text{MHz},\ \text{CDCl}_3):\ \delta_{\rm H}=7.81\ (\text{s},\ 1\text{H}),\ 6.93\ (\text{s},\ 1\text{H}),\ 5.41\ (\text{dd},\ J=8.4,\ 6.9\ \text{Hz},\ 1\text{H}),\ 3.90\ (\text{dd},\ J=6.2,\ 1.2\ \text{Hz},\ 1\text{H}),\ 3.39\ (\text{dd},\ J=11.6,\ 7.2\ \text{Hz},\ 1\text{H}),\ 3.33\ (\text{dd},\ J=11.5,\ 7.1\ \text{Hz},\ 1\text{H}),\ 2.59\ (\text{ddd},\ J=13.0,\ 8.7,\ 6.9\ \text{Hz},\ 1\text{H}),\ 2.13\ (\text{dd},\ J=13.0,\ 6.7,\ 1.4\ \text{Hz},\ 1\text{H}),\ 2.13\ (\text{dd},\ J=13.0,\ 6.7,\ 1.4\ \text{Hz},\ 1\text{H}),\ 2.14\ (\text{td},\ J=7.1,\ 4.0,\ 1.2\ \text{Hz},\ 1\text{Hz},\ 1\text$$

Preparation of 2-(((15,3*R***,5***S***,6***R***)-3-(oxazol-5-yl)-2-oxabicyclo-[3.1.0]hexan-6-yl)methyl)isoindoline-1,3-dione (35). DIAD (96 mg, 0.45 mmol, 1.5 equiv.) was added dropwise to a solution of oxazole 34 (54 mg, 0.30 mmol), PPh₃ (117 mg, 0.45 mmol, 1.5 equiv.) and phthalimide (66 mg, 0.45 mmol, 1.5 equiv.) in anhydrous THF (6 mL) at 0 °C under a nitrogen atmosphere. After stirring at 0 °C for 30 min the mixture was allowed to warm to room temperature and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography (PE–EtOAc 3 : 1 to EtOAc) to** obtain compound 35 (51 mg, 0.17 mmol, 55%) as a colorless solid.

Mp = 83 °C; R_f = 0.51 (EtOAc); $[\alpha]_D^{20}$ = +18.9 (DCM, c = 1.0); ¹H-NMR (300 MHz, CDCl₃): δ_H = 7.84 (dd, J = 5.5, 3.1 Hz, 2H), 7.79 (s, 1H), 7.72 (dd, J = 5.5, 3.1 Hz, 2H), 6.92 (s, 1H), 5.45–5.37 (m, 1H), 4.08 (dd, J = 6.3, 1.0 Hz, 1H), 3.56 (dd, J = 14.4, 6.9 Hz, 1H), 3.36 (dd, J = 14.4, 8.4 Hz, 1H), 2.59 (ddd, J = 13.1, 8.6, 7.1 Hz, 1H), 2.09 (ddd, J = 13.1, 7.2, 1.4 Hz, 1H), 1.84–1.75 (m, 1H), 1.59–1.51 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃): δ_C = 168.33 (C_q), 151.59 (C_q), 151.30 (+), 134.08 (+), 132.18 (C_q), 123.87 (+), 123.36 (+), 78.48 (+), 65.23 (+), 37.73 (-), 33.92 (-), 30.69 (+), 23.24 (+); IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3141, 3938, 1769, 1708, 1509, 1467, 1433, 1392, 1357, 1329, 1260, 1225, 1197, 1136, 1101, 1071, 1026, 950, 851, 798, 720, 645, 531; MS (EI): m/z (%) = 77.1 (8), 95.1 (100), 104.1 (6), 130.1 (6), 160.1 (18), 310.1 (1) [M^{+ -}]; HRMS (EI): calcd for C₁₇H₁₄N₂O₄ [M^{+ -}] 310.0954, found 310.0956.

Preparation of methyl-*N*'-**cyano**-*N*-((((1*S*,3*R*,5*S*,6*R*)-3-(**oxazol-**5-**yl**)-2-**oxabicyclo**[3.1.0]hexan-6-yl)methyl)carbamimido-thioate (36). A solution of aminooxazole 9a (19 mg, 0.11 mmol) and dimethyl *N*-cyanodithioiminocarbonate (34 mg, 0.22 mmol, 2 equiv.) in EtOH was stirred at room temperature for 18 h. The solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (DCM then DCM–MeOH 9:1) to afford compound 36 (29 mg, 0.11 mmol, quantitative) as a colorless oil.

 $R_{\rm f} = 0.51$ (PE-EtOAc 9:1); $[\alpha]_{\rm D}^{20} = +14.3$ (DCM, c = 1.0); ¹H-NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ = 7.84 (s, 1H), 7.16 (s, 0.5H), 6.96 (s, 1H), 6.53 (s, 0.5H), 5.43 (dd, J = 8.4, 7.2 Hz, 1H), 3.96 (dd, J = 6.3, 0.9 Hz, 1H), 3.45–2.86 (m, signal broadening due to rotamers, 2H), 2.73-2.32 (m, signal broadening due to rotamers, 3H), 2.62 (ddd, J = 13.0, 8.6, 7.0 Hz, 1H), 2.15 (dd, J = 13.0, 6.9 Hz, 1H), 1.77-1.68 (m, 1H), 1.50-1.37 (m, 1H); ¹³C-NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ = 151.67 (C_q), 151.44 (+), 123.99 (+), 78.34 (+), 64.99 (+), 44.01 (signal broadening due to rotamers, -), 33.82 (-), 30.09 (+), 23.30 (+), 14.64 (signal broadening due to rotamers, +), C=N and C=N signals too weak to be observed; IR (ATR): $\tilde{\nu}$ (cm⁻¹) = 3263 (br), 3126, 3011, 2939, 2174, 1716, 1554, 1511, 1430, 1357, 1285, 1182, 1104, 938, 846, 645; MS (ESI): m/z (%) = 279.0 (30) [MH⁺], 296.0 (40) [MNH₄⁺], 557.1 (100) $[2MH^+]$; HRMS (EI): calcd for $C_{12}H_{14}N_4O_2S [M^{++}]$ 278.0837, found 278.0833.

Pharmacology

Histamine dihydrochloride was purchased from Alfa Aesar GmbH & Co. KG (Karlsruhe, Germany). $[{}^{3}H]N^{\alpha}$ -methylhistamine and $[{}^{3}H]$ histamine were from Perkin Elmer Life Sciences (Boston, MA). Guanosine diphosphate (GDP) was from Sigma-Aldrich Chemie GmbH (Munich, Germany), and unlabeled GTP_γS was from Roche (Mannheim, Germany). $[{}^{3}H]$ pyrilamine was purchased from Hartmann Analytic (Braunschweig, Germany). $[{}^{3}S]$ GTP_γS was from PerkinElmer Life Sciences (Boston, MA) or Hartmann Analytic GmbH (Braunschweig, Germany). $[{}^{3}H]$ UR-DE257 (*N*-(6-(3,4-dioxo-2-(3-(3-(piperidin-1-ylmethyl) phenoxy)propylamino)-cyclobut-1-enylamino)hexyl)-[2,3- ${}^{3}H$]-propionamide) was synthesized in our laboratory.³¹

GF/C filters were from Whatman (Gaithersburg, USA). For liquid scintillation counting was used: PerkinElmer MicroBeta² 2450 MicroplateCounter (Massachusetts, USA), Brandel Harvester MWXRT-96TI, Brandel (Gaithersburg, USA). Scintillation cocktail Rotiszint[™] eco plus was from Carl Roth GmbH & Co KG (Karlsruhe, Germany).

Radioligand binding experiments³² were performed on the hH₁R, hH₂R, hH₃R and hH₄R as follows. H₁R assays: Sf9 insect cell membranes expressing the $hH_1R + RGS4$ were employed; H₂R assays: Sf9 insect cell membranes expressing the hH₂R $-Gs_{\alpha s}$ fusion protein were employed; H₃R assays: Sf9 insect cell membranes coexpressing the hH₃R, mammalian $G\alpha_{i2}$ and $G\beta_1\gamma_2$ were employed, H_4R assays: Sf9 insect cell membranes coexpressing the hH₄R, mammalian $G\alpha_{i2}$ and $G\beta_1\gamma_2$ were employed. The respective membranes were thawed and sedimented by centrifugation at 4 °C and 13 000g for 10 min. Membranes were resuspended in binding buffer (12.5 mM MgCl₂, 1 mM EDTA and 75 mM Tris/HCl, pH 7.4). Each well (total volume 250 μ L) contained 20 μ g (hH₁R), 28 μ g (hH₂R), 50 μ g (hH₃R), or 120 μ g (hH₄R) of membrane protein. Competition binding experiments were performed in the presence of 5 nM $[^{3}H]$ pyrilamine (hH₁R), 30 nM $[^{3}H]$ UR-DE257 (hH₂R), 3 nM $[{}^{3}H]N^{\alpha}$ -methylhistamine (hH₃R) or 15 nM $[{}^{3}H]$ histamine (hH₃R and hH₄R) and increasing concentrations of unlabeled ligands. Incubations were conducted for 60 min at 25 °C and shaking at 250 rpm. Bound radioligand was separated from free radioligand by filtration through 0.3% polyethyleneiminepretreated (PEI) GF/C filters, followed by three washes with 2 mL of cold binding buffer (4 °C) using a Brandel Harvester. Filter-bound radioactivity was determined after an equilibration phase of at least 12 h by liquid scintillation counting.

Functional [35S]GTPyS assays33 were performed as previously described for the H3R34 and H4R.35 H3R assays: Sf9 insect cell membranes coexpressing the hH₃R, mammalian $G\alpha_{i2}$ and $G\beta_1\gamma_2$ were employed. H_4R assays: Sf9 insect cell membranes coexpressing the hH₄R, mammalian $G\alpha_{i2}$ and $G\beta_1\gamma_2$ were employed. The respective membranes were thawed, sedimented by a 10 min centrifugation at 4 °C and 13 000g. Membranes were resuspended in binding buffer (12.5 mM MgCl₂, 1 mM EDTA, and 75 mM Tris/HCl, pH 7.4). Each assay tube contained Sf9 membranes expressing the respective HR subtype (15-30 µg protein per tube), 1 µM GDP, 0.05% (w/v) bovine serum albumin, 0.2 nM [³⁵S]GTPγS and the investigated ligands (dissolved in millipore water or in a mixture (v/v) of 80% millipore water and 20% DMSO) at various concentrations in binding buffer (total volume 250 µL). All H4R assays additionally contained 100 mM NaCl. For the determination of $K_{\rm B}$ values (antagonist mode of the functional [³⁵S]GTP γ S assay) histamine was added to the reaction mixtures (final concentration for H_{3/4}R: 100 nM). Incubations were conducted for 90 min at 25 °C and shaking at 250 rpm. Bound [³⁵S]GTPγS was separated from free [³⁵S]GTPγS by filtration through GF/C filters, followed by three washes with 2 mL of binding buffer (4 °C) using a Brandel Harvester. Filter-bound radioactivity was determined after an equilibration phase of at least 12 h by liquid scintillation counting. The experimental conditions

chosen ensured that not more than 10% of the total amount of $[^{35}S]$ GTP γ S added was bound to filters. Non-specific binding was determined in the presence of 10 μ M unlabeled GTP γ S.

All data are presented as mean \pm SEM of *N* independent experiments performed in triplicate. Maximal responses (intrinsic activities) were expressed as α -values. The α -value of histamine was set to 1.00; α -values of other compounds were referred to this value. IC₅₀ values were converted to K_i and K_B values using the Cheng–Prussoff equation.³⁶ K_i values were analyzed by nonlinear regression and best fit to one-site (monophasic) competition isotherms. pK_B values from the functional [³⁵S]GTP γ S were analyzed by nonlinear regression and best fit to sigmoidal dose-response curves (GraphPad Prism 5.0 software, San Diego, CA).

Acknowledgements

This work was supported by the Graduate Training Program (Graduiertenkolleg) GRK 760 "Medicinal Chemistry: Molecular Recognition – Ligand–Receptor Interactions" of the Deutsche Forschungsgemeinschaft.

References

- (a) S. J. Hill, C. R. Ganellin, H. Timmerman, J. C. Schwartz, N. P. Shankley, J. M. Young, W. Schunack, R. Levi and H. L. Haas, *Pharmacol. Rev.*, 1997, **49**, 253–278; (b) L. B. Hough, *Mol. Pharmacol.*, 2001, **59**, 415–419; (c) A. Strasser, H.-J. Wittmann, A. Buschauer, E. H. Schneider and R. Seifert, *Trends Pharmacol. Sci.*, 2013, **34**, 13–32; (d) R. Seifert, A. Strasser, E. H. Schneider, D. Neumann, S. Dove and A. Buschauer, *Trends Pharmacol. Sci.*, 2013, **34**, 33–58.
- 2 M. E. Parsons and C. R. Ganellin, *Br. J. Pharmacol.*, 2006, 147, 127–135.
- 3 J. W. Black, E. M. Parsons, C. J. Durant, W. A. M. Duncan and C. R. Ganellin, *Nature*, 1972, 236, 385.
- 4 J.-M. Arrang, M. Garbarg and J.-C. Schwartz, *Nature*, 1983, 302, 832–837.
- 5 (a) J. M. Arrang, M. Garbarg and J. C. Schwartz, *Neuroscience*, 1985, 15, 553–562; (b) J. M. Arrang, M. Garbarg and J. C. Schwartz, *Neuroscience*, 1987, 23, 149–157.
- 6 J. Clapham and G. J. Kilpatrick, Br. J. Pharmacol., 1992, 107, 919–923.
- 7 E. Schlicker, K. Fink, M. Detzner and M. Gothert, J. Neural Transm.: Gen. Sect., 1993, 93, 1–10.
- 8 E. Schlicker, K. Fink, M. Hinterthaner and M. Gothert, *Naunyn-Schmiedeberg's Arch. Pharmacol.*, 1989, **340**, 633– 638.
- 9 E. Schlicker, R. Betz and M. Gothert, *Naunyn-Schmiede*berg's Arch. Pharmacol., 1988, 337, 588-590.
- K. Sander, T. Kottke and H. Stark, *Biol. Pharm. Bull.*, 2008, 31, 2163–2181.
- 11 J. C. Schwartz, Br. J. Pharmacol., 2011, 163, 713-721.

- 12 (a) T. Nakamura, H. Itadani, Y. Hidaka, M. Ohta and K. Tanaka, Biochem. Biophys. Res. Commun., 2000, 279, 615-620; (b) T. Oda, N. Morikawa, Y. Saito, Y. Masuho and S. Matsumoto, J. Biol. Chem., 2000, 275, 36781-36786; (c) C. L. Liu, X. J. Ma, X. X. Jiang, S. J. Wilson, C. L. Hofstra, J. Blevitt, J. Pvati, X. B. Li, W. Y. Chai, N. Carruthers and T. W. Lovenberg, Mol. Pharmacol., 2001, 59, 420-426; (d) K. L. Morse, J. Behan, T. M. Laz, R. E. West Jr., S. A. Greenfeder, J. C. Anthes, S. Umland, Y. Wan, R. W. Hipkin, W. Gonsiorek, N. Shin, E. L. Gustafson, X. Qiao, S. Wang, J. A. Hedrick, J. Greene, M. Bayne and F. J. Monsma Jr., J. Pharmacol. Exp. Ther., 2001, 296, 1058-1066; (e) T. Nguyen, D. A. Shapiro, S. R. George, V. Setola, D. K. Lee, R. Cheng, L. Rauser, S. P. Lee, K. R. Lynch, B. L. Roth and B. F. O'Dowd, Mol. Pharmacol., 2001, 59, 427-433; (f) Y. Zhu, D. Michalovich, H. L. Wu, K. B. Tan, G. M. Dytko, I. J. Mannan, R. Boyce, J. Alston, L. A. Tierney, X. T. Li, N. C. Herrity, L. Vawter, H. M. Sarau, R. S. Ames, B. M. Davenport, J. P. Hieble, S. Wilson, D. J. Bergsma and L. R. Fitzgerald, Mol. Pharmacol., 2001, 59, 434-441.
- 13 (a) M. Zhang, R. L. Thurmond and P. J. Dunford, *Pharmacol. Ther.*, 2007, 113, 594–606; (b) B. B. Damaj, C. B. Becerra, H. J. Esber, Y. Wen and A. A. Maghazachi, *J. Immunol.*, 2007, 179, 7907–7915.
- 14 C. M. Marson, Chem. Rev., 2011, 111, 7121-7156.
- 15 H. D. Lim, R. M. van Rijn, P. Ling, R. A. Bakker, R. L. Thurmond and R. Leurs, *J. Pharmacol. Exp. Ther.*, 2005, **314**, 1310–1321.
- 16 (a) A. E. Kozikowski, Drug Design for Neuroscience, Raven Press, New York, 1993; (b) C. G. E. Wermuth, The Practice of Medicinal Chemistry, Academic Press, San Diego, 1996; (c) R. B. Silverman, The Organic Chemistry of Drug Design and Drug Action, Academic Press, San Diego, 2004.
- 17 Y. Kazuta, K. Hirano, K. Natsume, S. Yamada, R. Kimura, S. I. Matsumoto, K. Furuichi, A. Matsuda and S. Shuto, *J. Med. Chem.*, 2003, 46, 1980–1988.
- 18 T. Hashimoto, S. Harusawa, L. Araki, O. P. Zuiderveld, M. J. Smit, T. Imazu, S. Takashima, Y. Yamamoto, Y. Sakamoto, T. Kurihara, R. Leurs, R. A. Bakker and A. Yamatodani, *J. Med. Chem.*, 2003, 46, 3162–3165.
- 19 R. Geyer and A. Buschauer, *Arch. Pharm.*, 2011, 344, 775–785.
- 20 (a) A. P. G. Macabeo, A. Kreuzer and O. Reiser, Org. Biomol. Chem., 2011, 9, 3146–3150; (b) M. Schanderl, W. B. Jeong, M. Schwarz and O. Reiser, Org. Biomol. Chem., 2011, 9, 2543–2547; (c) S. Kalidindi, W. B. Jeong, A. Schall, R. Bandichhor, B. Nosse and O. Reiser, Angew. Chem., Int. Ed., 2007, 46, 6361–6363; (d) M. Seitz and O. Reiser, Curr. Opin. Chem. Biol., 2005, 9, 285–292; (e) B. Nosse, R. B. Chhor, W. B. Jeong, C. Böhm and O. Reiser, Org. Lett., 2003, 5, 941–944; (f) R. B. Chhor, B. Nosse, S. Sorgel, C. Böhm, M. Seitz and O. Reiser, Chem.–Eur. J., 2003, 9, 260–270.

- 21 (a) C. Böhm, M. Schinnerl, C. Bubert, M. Zabel, T. Labahn,
 E. Parisini and O. Reiser, *Eur. J. Org. Chem.*, 2000, 2955–2965; (b) C. Böhm and O. Reiser, *Org. Lett.*, 2001, 3, 1315–1318; (c) M. Schinnerl, C. Böhm, M. Seitz and O. Reiser, *Tetrahedron: Asymmetry*, 2003, 14, 765–771; (d) E. Jezek,
 A. Schall, P. Kreitmeier and O. Reiser, *Synlett*, 2005, 915–918.
- 22 R. Weisser, W. M. Yue and O. Reiser, *Org. Lett.*, 2005, 7, 5353–5356.
- 23 A. M. van Leusen, H. Siderius and B. E. Hoogenboom, *Tetrahedron Lett.*, 1972, 2369–2372.
- 24 D. A. Horne, K. Yakushijin and G. Buchi, *Heterocycles*, 1994, **39**, 139–153.
- 25 (a) A. M. van Leusen, J. Wildeman and O. H. Oldenziel, J. Org. Chem., 1977, 42, 1153–1159; (b) A. M. van Leusen, F. J. Schaart and D. van Leusen, Recl. Trav. Chim. Pays-Bas, 1979, 98, 258–262; (c) R. ten Have, M. Huisman, A. Meetsma and A. M. van Leusen, Tetrahedron, 1997, 53, 11355–11368.
- 26 S. Harusawa, H. Moriyama, Y. Murai, T. Imazu, H. Ohishi, R. Yoneda, T. Kurihara, H. Hata and Y. Sakamoto, *Chem. Pharm. Bull.*, 1997, 45, 53–61.
- 27 S. Hanessian, T. J. Liak and B. Vanasse, *Synthesis*, 1981, 396–397.
- 28 O. Mitsunobu, M. Wada and T. Sano, J. Am. Chem. Soc., 1972, 94, 679.
- (a) G. Mehta and P. V. R. Acharyulu, J. Chem. Soc., Chem. Commun., 1994, 2759–2760; (b) K. J. Henry and B. Fraserreid, Tetrahedron Lett., 1995, 36, 8901–8904; (c) R. V. Stick and K. A. Stubbs, J. Carbohydr. Chem., 2005, 24, 529–547.
- 30 P. Igel, S. Dove and A. Buschauer, *Bioorg. Med. Chem. Lett.*, 2010, 20, 7191–7199.
- 31 P. Baumeister, D. Erdmann, G. Bernhardt and A. Buschauer, in *ISMC 2012 Book of Abstracts, ChemMedChem*, 2012, vol. **270**, p. 401.
- 32 (*a*) R. Seifert, K. Wenzel-Seifert, U. Gether and B. K. Kobilka, *J. Pharmacol. Exp. Ther.*, 2001, 297, 1218– 1226; (*b*) M. T. Kelley, T. Burckstummer, K. Wenzel-Seifert, S. Dove, A. Buschauer and R. Seifert, *Mol. Pharm.*, 2001, 60, 1210–1225.
- 33 (a) T. Asano, S. E. Pedersen, C. W. Scott and E. M. Ross, *Biochemistry*, 1984, 23, 5460–5467; (b) G. Hilf, P. Gierschik and K. H. Jakobs, *Eur. J. Biochem.*, 1989, 186, 725–731.
- 34 (a) A. Rouleau, X. Ligneau, J. Tardivel-Lacombe, S. Morisset, F. Gbahou, J. C. Schwartz and J. M. Arrang, Br. J. Pharmacol., 2002, 135, 383–392; (b) D. Schnell, K. Burleigh, J. Trick and R. Seifert, J. Pharmacol. Exp. Ther., 2010, 332, 996–1005.
- 35 E. H. Schneider, D. Schnell, D. Papa and R. Seifert, *Biochemistry*, 2009, **48**, 1424–1438.
- 36 Y. Cheng and W. H. Prusoff, *Biochem. Pharmacol.*, 1973, 22, 3099–3108.

Org. Biomol. Chem.