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ABSTRACT: The first highly enantioselective catalytic synthesis of P-stereogenic secondary phosphine-boranes was realized by the
asymmetric addition of primary phosphine to electron-deficient alkenes with a newly developed unsymmetric bisphosphine (PCP′)
pincer-nickel complex. Various P-stereogenic secondary phosphine-boranes were obtained in 57−92% yields with up to 99% ee and
>20:1 dr. The follow-up alkylation upon P−C bond formation with alkyl halides provided a practical way to access P-chiral
compounds with diverse functional groups.

P-stereogenic molecules are an important class of
compounds, which not only are widely utilized as chiral

ligands or organocatalysts for diverse asymmetric trans-
formations,1−3 but also function as drugs and biological
molecules.4−6 Thus, the synthesis of P-stereogenic compounds
is of paramount importance. In particular, the development of
privileged P-chiral phosphine ligands, such as CAMP,
DIPAMP, Tangphos, QuinoxPhos, BIBPO, etc., opens up a
new research area for achieving interesting asymmetric
catalysis.7−27 Continuous efforts have been deployed to
develop effective methodologies for the preparation of P-
stereogenic tertiary phosphines.28−35 For example, the dynamic
kinetic resolution of racemic secondary phosphines with alkyl
or aryl halides affording P-chiral compounds has been
investigated with chiral palladium,36−38 platinum,39−42 and
ruthenium43,44 complexes as catalysts. In addition, catalytic
asymmetric additions of racemic secondary phosphines to
benzoquinones45 or electron-deficient olefins46−48 have been
also exploited to produce P-stereogenic phosphines.49−51

Compared to configurationally stable P-stereogenic tertiary
phosphine, secondary phosphine is prone to racemization due
to its low inversion barrier,52 which makes the synthesis of
optically active secondary phosphine more difficult and
challenging. The reported methods limit to the resolution of
secondary phosphine chiral at phosphorus via recrystalliza-
tion53 or using chiral auxiliaries.10,28 Considering the
importance of P-stereogenic secondary phosphines in serving
as versatile building blocks for the divergent construction of
chiral phosphorus ligands (Figure 1a)10,28−30,32 and transition
metal complexes,54,55 new catalytic asymmetric strategies to
the construction of P-stereogenic secondary phosphines are
highly desirable. To the best of our knowledge, the direct
preparation and application of P-chiral secondary phosphine
via a catalytic process have not been reported.56 To address the
difficulties in chiral secondary phosphines synthesis and enrich
the ligand portfolio for asymmetric catalysis, here we report for
the first time the catalytic synthesis of P-stereogenic secondary
phosphine-boranes with high enantio- and diastereoselectiv-
ities with a newly developed unsymmetric bisphosphine

(PCP′) pincer-nickel complex (Figure 1b). The resulting
chiral secondary phosphines are readily convertible into useful
chiral phosphines ligands for asymmetric transformations.
At the onset of our study, we envisioned that our previously

developed bisphosphine (PCP) pincer-palladium ((S,S)-1)57

would be capable of controlling the stereochemistry of the
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Figure 1. P-stereogenic phosphines.
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addition of phenylphosphine to enones by the chiral C2
symmetric-type palladium complex. When 1a reacted with
H2PPh in the presence of (S,S)-1 under −60 °C, the desired
P−C bond formation product 2a was obtained in 72% yield
after BH3 protection, but to our disappointment, poor enantio-
and diastereoselectivity was observed (Table 1, entry 1), which

is a sharp contrast to the high ee obtained with HPPh2.
57 It is

speculated that compared with diphenylphosphine, H2PPh has
a smaller size, and the rotation around Pd−P bond will be
easier when it is bound to the Pd catalyst. We wondered if
unsymmetric PCP′ pincer-metal complexes bearing two
different neutral P and P′ donors in a larger size will be
more flexible and effective for optimization of the catalyst and
improvement of the stereoselectivity in the current reaction.
Therefore, we designed and synthesized PCP′ pincer metal
complexes containing phenyl-bridged phosphine−phosphinite
ligand with a stereogenic carbon center based on our reported
method with (S,S)-1 as the catalyst.57 The corresponding
enantiopure Pd/Ni complexes (S)-2−4 was obtained via a
convenient one-pot three-step reaction (see Supporting
Information). Encouragingly, when our newly developed Pd
complex (S)-2 bearing a PPh2 and a larger OPtBu2 group
combined with KOAc were applied to this system, the reaction
proceeded in 59% ee, albeit with low dr (entry 2). A
modification of the catalyst by changing the center metal to
nickel provided 2a in 70% ee and 5:1 dr (entry 3). Further
optimization of the ligand by replacing the Ph ((S)-3) with a

3,5-(Me)2-Ph ((S)-4) substituent improved the enantio- and
diastereoselectivity to 94% ee and 13:1 dr (entry 4). With OAc
anion (S)-5 displayed similar catalytic activity compared to
(S)-4 (entry 5). In contrast, a cationic complex (S)-6 did not
catalyze the reaction (entry 6). This hydrophosphination is
sensitive to the temperature and solvent, and the best results
were obtained by using DCM at −40 °C (entries 7−11).
Control experiments verified that both catalyst and base are
essential for product formation (entries 12 and 13).
Under the optimized conditions (Table 1, entry 10), the

hydrophosphination of a wide variety of enones with H2PPh
was then investigated using complex (S)-4 as the catalyst
(Figure 2). Both electron-withdrawing (F, Cl, and Br) and

electron-donating (Me and OMe) substituents attached to β-
aryl α,β-unsaturated phenyl ketone substrates were tolerated,
and all of them furnished high enantioselectivities and good
diastereoselectivities (2b−2f). With substituents at the ortho-
position or meta-position, the reaction proceeded well and
provided the products in good yields with up to 97% ee and
>20:1 dr (2g and 2h). The β-naphthyl and β-ferrocenyl enones
were also appropriate substrates for the current catalytic
system (2i and 2j). In the cases of β-heteroaryl species such as
β-furyl, β-thienyl, β-pyridyl enones that may bind to the nickel
center through the heteroatom, good stereocontrol could still
be achieved (2k−2n). In addition, the enones bearing an alkyl

Table 1. Catalytic Synthesis of P-Stereogenic Secondary
Phosphine-Boranes with PCP Pincer-Pd/Ni Complexesa

entry catalyst solvent
T

(°C)
yield

(%)b/drc
ee of the major and minor

product (%)d

1e (S,S)-1 DCM −60 72(1:1) 13/7
2 (S)-2 DCM −60 84(1:1) 59/54
3 (S)-3 DCM −60 75(5:1) 70/24
4 (S)-4 DCM −60 80(13:1) 94/−
5e (S)-5 DCM −60 78(13:1) 94/−
6e (S)-6 DCM −60 0 n.a.
7 (S)-4 MeOH −60 70(2:1) 40/32
8 (S)-4 CHCl3 −60 60(4:1) 89/56
9 (S)-4 THF −60 18(1:1) 44/17
10 (S)-4 DCM −40 82(13:1) 94/−
11 (S)-4 DCM −20 82(12:1) 90/−
12e (S)-4 DCM −40 0 n.a.
13 none DCM −40 0 n.a.

aReaction conditions: enone 1a (0.20 mmol) and phenylphosphine
(0.30 mmol) with chiral catalyst (1.0 mol %) and KOAc (10 mol %)
in DCM (1.4 mL) at the indicated temperature for 12 h under
nitrogen atmosphere. bIsolated yield. cdr value shown in parentheses
determined by crude 1H NMR. dee value determined by HPLC. eNo
KOAc. n.a. = no analysis.

Figure 2. Substrate scope. An X-ray crystal structure59 of 2i was
obtained to assign the absolute configuration of the products (see the
Supporting Information).
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group in the β position such as iPr (2o), cyclopropyl (2p),
cyclohexyl (2q), and hetero-cyclohexyl (2r) afforded high
levels of stereoselectivities. Gratifyingly, α,β-unsaturated N-
acylpyrroles are also suitable substrates for this transformation
under standard conditions (2s−2u).58
Upon scaling up the hydrophosphination reaction of β-

naphthyl enone in the presence of 2 mol % of PCP′ pincer-
nickel catalyst (S)-4, 1.12 g of product 2i (99% yield, 92% ee,
12:1 dr) were obtained, displaying the robust nature of this
reaction. The obtained P-stereogenic secondary phosphine is
present as a useful precursor for the conversion into chiral
tertiary phosphines (3a−3e) and bisphosphine compounds (3f
and 3g) with moderate to high yields by the reaction of
optically active 2i and alkyl halides in the presence of
NaHMDS under −78 °C (Figure 3).60

To further illustrate the utility of the present methodology, a
bisenone 4 was reacted with H2PPh in the presence of (S)-4,
followed by BH3 protection and methyl substitution to yield a
bisphosphine 5 bearing four stereogenic centers in 99% ee
(Figure 4). It is worth noting that this chiral bisphosphine
compound was a useful ligand for the preparation of P-chiral
pincer nickel complex, which was further verified as an effective
catalyst in the asymmetric conjugate hydrophosphination,
furnishing the desired product 6 in 93% yield with 94% ee (in
toluene).
The proposed catalytic cycle for the nickel catalyzed

asymmetric addition of H2PPh to enones is illustrated in
Figure 5. First, coordinated anion exchange forms the PCP′-
Ni-OAc complex (S)-5. Second, transphosphination occurs
between H2PPh and (S)-5, which affords a nickel phosphido
intermediate A61−63 (31P NMR spectrum: δ (ppm) 200.78 (d,
J = 247.6 Hz), 55.22 (d, J = 245.4 Hz), −57.0 (brs); see
Supporting Information). Then, the nucleophilic phosphorus
addition to the β-position of 1 generates a nickel phosphine

complex that bears a pendant anion B. Finally, the reaction of
this nickel intermediate B with HOAc releases the product as
well as regenerates active catalyst (S)-5. It is important to note
that the product is unstable without protection and the
racemization at phosphorus occurred when the temperature
was raised, leading to the formation of two isomers with low
diastereoselectivity (31P NMR spectrum: δ (ppm) −22.0 (s),
−29.0 (s); see Supporting Information).
The crystal structures of (S)-2, (S)-3, and (S)-5 were

determined by X-ray diffraction.59 Figure 6 exhibits the
superimposed crystal structures of (S)-3 and (S)-5 and reveals

Figure 3. Synthetic transformations.

Figure 4. Synthetic approach to pincer−Ni-Br complex and its
application.

Figure 5. Proposed mechanism.

Figure 6. Superimposed crystal structure of (S)-3 (gray) with (S)-5
(blue). Fitted are the central metal together with the metal-bound
phenyl carbon atoms. Hydrogen atoms are omitted for clarity.
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differences in how the phosphorus groups flank the
coordination site around nickel center. It is easy to observe
that two phosphorus atoms are almost located in the same
plane with the Ni-bound phenyl atoms in (S)-3, while
distributed on both sides of the plane in (S)-4. This distortion
(θ = 20.1(3)°, see the Supporting Information) should be
attributed to the 3,5-methyl substituted phenyls and -OAc
group. The inversion of phenylphosphine in nickel phosphido
intermediate A might be limited due to the enhanced steric
strain when (S)-4 was used as catalyst. Experimental evidence
for this steric hindrance effect by the unsymmetric PCP′
pincer-nickel complex (S)-4 is supported by the improved
enantio- and diastereoselectivity, which were obtained when
utilizing 3,5-(Me)2-Ph in place of Ph substituent (Table 1,
entry 4 vs entry 3). Similarly, low reactivity was observed by
the addition of chalcone with HPPh2 using (S)-4 as catalyst
(14% yield and 12% ee with (S)-4; 27% yield and 38% ee with
(S)-3, see the Supporting Information), which can be
explained by the crowded steric environment around nickel
center in (S)-4.
The tentative stereochemical pathway for this hydro-

phosphination is shown in Figure 7. The observed absolute

configuration of the major product 2 with R configuration at
the carbon atom and S configuration at the phosphorus atom
when (S)-4 is used is consistent with this mechanistic picture
in which the prochiral Si face of the nickel phosphido
intermediate A is effectively shielded by tert-butyl groups of the
unsymmetric PCP′ ligand sphere, providing excellent stereo-
chemical control over the addition process.
In summary, we have developed an unsymmetric bi-

sphosphine (PCP′) pincer-nickel complex for catalytic syn-
thesis of P-stereogenic secondary phosphine-boranes in high
yields with excellent enantio- and diastereoselectivities.
Substrates with various functional groups were tolerated
under current conditions. In addition, the obtained chiral
secondary phosphines are useful precursors for the conversion
into other phosphorus compounds, which can be used as chiral
phosphine ligands for asymmetric catalysis. Further application
of this chiral pincer-nickel catalyst in other asymmetric
reactions are in progress.
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