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Phosphinative cyclopropanation of allyl phosphates with lithium 
phosphides 
Ryo Shintani,* Ayase Ohzono and Kentaro Shirota 

A new cyclopropanation reaction of allyl phosphates with lithium 
phosphides has been developed to give cyclopropylphosphines 
through the formation of both a C–P bond and a cyclopropane ring 
at the same time, and high selectivity toward cyclopropanation 
over allylic substitution has been realized by conducting the 
reaction in the presence of HMPA.

Cyclopropanation of allylic electrophiles by nucleophilic attack 
at their -position represents one of the attractive approaches 
for the synthesis of substituted cyclopropanes from relatively 
simple precursors, although it requires suppression of 
competing allylic substitution.1  Applicable nucleophiles to this 
mode of cyclopropanation are typically enolate-type carbon 
nucleophiles under palladium catalysis.2 On the other hand, 
the use of heteroatom nucleophiles under palladium catalysis 
is limited to intramolecular processes using nitrogen3 or 
oxygen4 nucleophiles. Only boron5 and silicon (Scheme 1a)6 
nucleophiles have been utilized as effective heteroatom 
nucleophiles for intermolecular reactions so far under copper 
catalysis and uncatalyzed stoichiometric conditions, 
respectively. In addition, a photocatalytic process was recently 
reported for the intramolecular synthesis of chlorinated 
cyclopropanes by isomerization of cinnamyl chlorides through 
a radical 

Scheme 1 (a) Silylative (previous work) and (b) phosphinative (this 
work) cyclopropanation of allyl phosphates.
mechanism.7

   Phosphorus-substituted cyclopropanes such as 
cyclopropylphosphines constitute a useful class of compounds 
that can be applied as ligands for transition metals in various 
catalytic organic transformations.8 They are also found in 
biologically active molecules such as antimalarial agents.9 
Synthesis of these compounds always relies either on C–P 
bond formation using pre-existing three-membered 
carbocycles such as cyclopropanes8a,c–f,10 and cyclopropenes11 
or on C–C bond-forming cyclopropanation using substrates 
possessing preinstalled C–P bonds.8b,12 In contrast, despite its 
potential versatility and efficiency of the overall process, no 
reports have been made that achieves both C–P bond 
formation and cyclopropane-ring formation at the same time, 
as far as we are aware. In this context, herein we describe the 
first such process by the reaction of allyl phosphates with 
lithium phosphides in the presence of hexamethylphosphoric 
triamide (HMPA) (Scheme 1b).
   Initially, we chose (E)-cinnamyl diethyl phosphate (1a) as a 
model substrate and treated it with lithium 
dicyclohexylphosphide (2a), which was prepared from 
dicyclohexylphosphine and n-butyllithium, in various solvents 
at 20 °C, and the products were analyzed after oxidation of 
phosphorus with hydrogen peroxide (Table 1). The reaction in 
toluene resulted in no formation of cyclopropanation product 
3aa with 5% yield of allylic substitution product 4aa (entry 1).13 
Selective formation of 4aa over 3aa was also observed with 
improved chemical yields when the reaction was conducted in 
acyclic ethereal solvents such as diethyl ether, tert-butyl 
methyl ether, and cyclopentyl methyl ether, although the 
formation of 3aa was also confirmed as a minor component 
(3aa/4aa = 6/94–3/97; entries 2–4). The best result toward the 
formation of 4aa was achieved by conducting the reaction in 
cyclopentyl methyl ether (71% yield, 3aa/4aa = 3/97; entry 4). 
On the other hand, a significant amount of desired 
cyclopropane 3aa was obtained when the solvent was 
switched to THF (3aa/(4aa+4aa’) = 43/57; entry 5), and a 
slightly higher ratio was observed by conducting the reaction 
at –78 °C instead of 20 °C (3aa/(4aa+4aa’) = 47/53; 

Table 1 Reaction of Allyl Phosphate 1a with Lithium Phosphide 2a
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Entry Additive Solvent Temp (°C)
Yield of
3aa+4aa (%)a 3aa/4aab

1 None Toluene 20 5b 0/100

2 None Et2O 20 55b 6/94

3 None tBuOMe 20 73 5/95

4 None cPentOMe 20 71 3/97

5 None THF 20 86b 43/57c

6 None THF –78 91 47/53d

7 DMPU THF –78 86 60/40e

8 HMPA THF –78 77f 92/8g

a Combined isolated yield. trans/cis > 99/1 for both 3aa and 4aa unless 
otherwise noted.  b Determined by 1H NMR. c 4aa/4aa’ = 67/33.  d 
4aa/4aa’ = 93/7.  e 4aa/4aa’ = 85/15.  f Containing inseparable 
dicyclohexyl(3-phenylpropyl)phosphine oxide (≤4%).  g 4aa/4aa’ = 
88/12.

entry 6). The different reaction outcomes between acyclic 
ethers and THF may indicate that better coordination ability of 
oxygen atom of THF to lithium phosphide 2a increased its 
nucleophilicity, which facilitated the attack to less electrophilic 
-carbon of 1a compared to its -carbon. Based on this 
hypothesis, we decided to examine several Lewis bases as an 
additive. Although nitrogen donors such as 4-
dimethylaminopyridine (DMAP) and N,N,N’,N’-
tetramethylethylenediamine (TMEDA) showed no effect (data 
not shown), the use of N,N’-dimethylpropyleneurea (DMPU) 
improved the selectivity toward 3aa to some extent 
(3aa/(4aa+4aa’) = 60/40; entry 7), and high selectivity of 3aa 
was observed by using hexamethylphosphoric triamide 
(HMPA) as an additive (3aa/(4aa+4aa’) = 92/8; entry 8).14

   Under the conditions using HMPA as an additive, 
cyclopropanation with lithium phosphide 2a effectively 
proceeds for various allyl phosphates 1 (Table 2). For example, 
in addition to parent cinnamyl phosphate 1a (entry 1), 
cinnamyl phosphates 1b–e having substituents at para, meta, 
or ortho positions could all be employed to give the 
corresponding cyclopropanation products 3ba–ea in 
reasonably high yields with 90–99% selectivity (entries 2–5).15 
Naphthyl, thienyl, and alkenyl-substituted allyl phosphates 1f–i 
also gave cyclopropanes 3fa–ia with high selectivity (90/10–
97/3; entries 6–9), but only allylic substitution took place for 
alkyl-substituted allyl phosphate 1j under the current reaction 
conditions (entry 10). On the other hand, more electron-
deficient allyl phosphate 1k readily underwent selective 
cyclopropanation in the absence of HMPA, as expected from 
its ability as a Michael acceptor (entry 11).16 The use of ,-
diphenyl allyl phosphate 1l also provided cyclopropanation 
product 3la with relatively high selectivity (85/15; eqn (1)), and 
the reaction of -methyl--phenyl allyl phosphate 1m with 2a 

mostly gave cyclopropanation product 3ma (97/3) as a mixture 
of stereoisomers (dr = 87/13; eqn(2)). With regard to the 
substituents on the phosphorus atom of lithium phosphides, 
other secondary alkyl groups such as cyclopentyl (2b) and 
isopropyl (2c) groups could be used for the reaction with allyl 
phosphate 1b to give cyclopropanation products 3bb–bc in 
good yields with excellent selectivity (≥97/3; entries 12 and 
13). In addition, both primary and tertiary alkyl groups were 
effectively employed as well to give 3bd with perfect 
selectivity and 3be with 89% selectivity (entries 14 and 15). 
Unfortunately, 

Table 2 Cyclopropanation of Allyl Phosphates 1 with Lithium 
Phosphides 2

Entry  R R’ 3a
Yield of
3+4 (%)b 3/4c

1 3aa 77d 92/8e

2 2a 3ba 80 97/3

3 2a 3ca 76 99/1

4 2a 3da 86d 90/10f

5 2a 3ea 67 d 90/10g

6 2a 3fa 97 97/3h

7 2a 3ga 86 97/3i

8 2a 3ha 82 90/10j

9k 2a 3ial 95 96/4

10m 2a 3ja 90 0/100n

11k 2a 3ka 70 100/0

12 1b 3bb 70 100/0

13 1b 3bc 82 97/3

14 1b 3bd 86 100/0

15 1b 3be 88 89/11o

16 1b 3bf 80 0/100

17 2f 3nf 76 100/0
a trans/cis > 99/1.  b Combined isolated yield.  c Determined by 1H 
NMR.  d Containing inseparable dicyclohexyl(3-arylpropyl)phosphine 
oxide (2–4%).  e 4aa/4aa’ = 88/12.  f 4da/4da’ = 89/11.  g 4ea/4ea’ = 
65/35.  h 4fa/4fa’ = 50/50.  i 4ga/4ga’ = 96/4.  j 4ha/4ha’ = 80/20.  k The 
reaction was conducted in the absence of HMPA.  l trans/cis = 96/4.  m 
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The reaction time for the first step was 30 min.  n 4ja/4ja’ = 94/6.  o 
4be/4be’ = 62/38.

the use of lithium diphenylphosphide (2f) gave only allylic 
substitution product 4bf from substrate 1b under the present 
reaction conditions (entry 16), but somewhat electron-
deficient 4-methoxycarbonyl-substituted cinnamyl phosphate 
1n completely reversed the selectivity to give cyclopropane 
3nf as the sole product in 76% yield (entry 17). It is worth 
noting that the present phosphinative cyclopropanation of (E)-
allyl phosphates gives trans-cyclopropanes 3 with no 
formation of the corresponding cis-isomers in most cases as 
exemplified in the reaction of (E)-1a with 2d (Scheme 2a). On 
the other hand, the reaction of (Z)-1a gave a mixture of trans-
3ad and cis-3ad in favor of the cis-isomer along with some 
allylic substitution product 4ad (Scheme 2b). These results 
indicate that addition of phosphide nucleophile and following 
three-membered ring formation take place more or less in a 
concerted manner on the opposite sides of the alkene with 
each other, rather than discrete formation of a carbanion 
intermediate in a stepwise fashion.

   We subsequently examined the effect of the nature of 
leaving groups to gain further insight into the origin of 
selectivity in the present reaction. Cinnamyl tert-butylsulfinate 
5, presumably having a slightly weaker leaving group ability 
than 1a based on the pKa values of their conjugate acids 
(tBuS(O)(OH): 2.7517 versus (EtO)2P(O)(OH): 1.3918), was found 
to react with 2a to give cyclopropanation product 3aa in 77% 
yield with a somewhat higher selectivity of 99/1 under the 
same reaction conditions (eqn (3)). Selective cyclopropanation 
(90/10) was also observed for the reaction of cinnamyl phenyl 
ether 6 with an even weaker leaving group (pKa value of 
phenol: 10.019), 

Scheme 2 Comparison of reactions using (a) E- and (b) Z-cinnamyl 
phosphates.

although the reaction had to be conducted at a higher 
temperature. In contrast, cinnamyl chloride 7 having a much 
stronger leaving group resulted in the formation of allylic 
substitution product. These results, along with the trend 
observed in Table 2, indicate that the selectivity between 
cyclopropanation and allylic substitution seems to be partly 
controlled by the balance between electrophilicity at the -
position, which is mainly governed by the substituent at the -
position, and the leaving group ability at the -position.

   In summary, we have developed a new cyclopropanation 
reaction of allyl phosphates with lithium phosphides to give 
cyclopropylphosphines through the formation of both a C–P 
bond and a cyclopropane ring at the same time. High 
selectivity toward cyclopropanation over allylic substitution 
has been realized by conducting the reaction in the presence 
of HMPA. We have also demonstrated the importance of 
choice of leaving groups and future studies will be directed 
toward further understanding of the origin of selectivity as 
well as development of cyclopropanation reactions with other 
nucleophiles.
   Support has been provided in part by the Naito Foundation. 
We thank Mr. Tomohiro Tsuda for the help of X-ray 
crystallographic analysis.
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