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Z-scheme MoS2/Bi2O3 heterojunctions: enhanced
photocatalytic degradation performance and
mechanistic insight†

Rong Ji,a Changchang Ma, *b Wei Ma,c Yang Liu,d Zhi Zhu a and
Yongsheng Yan *a

A new Z-scheme MoS2/Bi2O3 heterojunction photocatalyst was successfully prepared using a facile and

practical hydrothermal method. The Z-scheme MoS2/Bi2O3 heterojunction exhibits a superior degradation

efficiency compared to pure MoS2 and Bi2O3 for removing industrial and domestic pollutants under visible

light, such as 2-mercaptobenzothiazole, tetracycline and rhodamine B. The enhancement in the photocatalytic

performance mainly stems from the interfacial interaction between the MoS2 nanosheets and Bi2O3

rods, which can increase the specific surface area and accelerate the separation of the photo-induced

electron–hole pairs. To explain this interfacial interaction between MoS2 and Bi2O3 in the Z-scheme

MoS2/Bi2O3 heterojunction, several characterization techniques were applied. In addition, the photocata-

lytic mechanism for degrading pollutants was demonstrated using trapping experiments and electron

spin resonance. This work could provide a promising approach for the formation of other Z-scheme

transition metal compound heterojunctions with outstanding photocatalytic activity.

1. Introduction

Mercaptans, one of several significant chemical products, have
found comprehensive applications in various fields during the
rapid development of the chemical industry.1–3 Among these
mercaptans, 2-mercaptobenzothiazole (MBT), an important
mercaptan, has been widely used in chemical manufacturing,
for use in medicines, antidotes, rubber vulcanization, and so
forth. Although MBT has many purposes, there is no doubt that
MBT has a certain virulence, which irritates the skin and
mucous membrane resulting in skin ulcers.4 Aside from the
abovementioned industrial pollutants, there are some domestic
pollutants in water, such as tetracycline (TC) and rhodamine
B (RhB). These can cause damage to the functioning organs of
the body in high concentrations. Therefore, there is an urgent
need to reduce and remove MBT, TC and RhB from water to
protect the environment and human health from harm.5

Recently, photocatalysis has become more and more attrac-
tive because it has been described as a potential method to deal
with industrial and domestic pollutants.6–8 Thus, a range of
single photocatalysts can be applied to remove organic pollu-
tants in order to solve the increasing and devastating environ-
mental problems.9,10 Bismuth trioxide (Bi2O3), as a metal oxide
semiconductor, stands out among the other metal semicon-
ductor materials.11,12 Bi2O3 has been used in a lot of fields,
such as for use in sensors, supercapacitor electrodes, and solid
oxide fuel cells.14–16 It has a low cost and a suitable band gap of
2.5–2.8 eV.13 In addition, unlike other popular semiconductor
photocatalysts, such as TiO2 and SrTiO3, Bi2O3 can be excited by
visible light.17–19 Nevertheless, rapid recombination of charge
carriers in pure Bi2O3 frequently leads to its poor photocatalytic
activity. Thus, a bare Bi2O3 semiconductor photocatalyst cannot
meet the demands of daily life.13 In order to overcome this
drawback, numerous researchers have reported various means
to modify Bi2O3, including semiconductor compositing, carbon
introduction and metal/nonmetal ion doping.20–22 However,
the above described approaches have several shortcomings
such as a high cost, low efficiency and a lack of stability. It is
well known that the fabrication of Z-scheme heterojunctions
with a suitable band structure has been researched widely and
can accelerate charge separation effectively and give the rest of
the electrons and holes a higher oxidation–reduction ability.23–26

Until now, a lot of Bi2O3 heterojunction photocatalysts have been
studied for enhancing the photocatalytic performance, such as
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WO3/g-C3N4/Bi2O3, BiOCl/Bi2O3, RGO–Cu2O/Bi2O3, and Cs2O–
Bi2O3–ZnO.27–30 By combining the abovementioned Z-scheme
and heterojunction structures, building a Z-scheme heterojunc-
tion photocatalyst seems to be an excellent method with great
potential to handle the disadvantages of Bi2O3. Thus, a semi-
conductor needs to be found which is well matched with Bi2O3

to form a Z-scheme heterojunction to further increase the
photocatalytic performance.

Among numerous semiconductors, molybdenum disulphide
(MoS2) as a flake transition metal sulfide has been commonly
researched for the enhancement of the photocatalytic
efficiency.31–34 It acts as a two dimensional (2D) sheet structure,
which is comparable, and even better in some cases, to other
multidimensional metal materials in the photocatalytic
field.35–38 Very recently, MoS2 as a metal dichalcogenide, has
received a large amount of attention for the degradation of
organic pollutants owing to its large surface area, high electrical
conductivity, and stable chemical properties.39–42 A variety of
studies have reported the ability of MoS2 heterojunctions for
the degradation of organic pollutants, such as MoS2/g-C3N4,
MoS2/Bi2WO6 and MoS2/Mn0.2Cd0.8S/MnS heterojunctions.43–45

Moreover, the unique 2D layered crystalline structures of MoS2 can
ensure the separation and transportation of the charge carrier.46,47

In addition, the conduction band (CB)/valence band (VB) of MoS2

is located at �0.38 eV/1.52 eV, which conforms well with Bi2O3

(0.16 eV/2.98 eV) to create a Z-scheme heterojunction. Therefore, it
is hoped that preparation of a Z-scheme heterojunction by
recombination of MoS2 with Bi2O3 will promote the charge
carrier separation for the photocatalytic removal of various
pollutants under visible light. Finally, it must be emphasized
that there are no reports published to date detailing research on
the Z-scheme MoS2/Bi2O3 heterojunction and its application in
the photocatalysis field.

In light of the above described considerations, in this paper
a Z-scheme MoS2/Bi2O3 heterojunction was achieved by a facile
and practical hydrothermal method. In order to evaluate the
photocatalytic activity of the Z-scheme MoS2/Bi2O3 heterojunc-
tion, a series of MBT, TC and RhB degradation experiments
were carried out under visible light. These results all proved
that the Z-scheme MoS2/Bi2O3 heterojunctions not only distinctly
strengthens the visible-light photocatalytic efficiency compared
with pure MoS2 and Bi2O3, but also possessed outstanding
stability and reusability. As expected, the enhanced photocataly-
tic performance for the degradation of various organic pollutants
is on account of the strong interfacial interaction between MoS2

and Bi2O3 and the fast transportation of the electron hole pairs
in the interface, which also extends the lifetime of the photo-
generated charge carriers.

2. Experimental

The Z-scheme MoS2/Bi2O3 heterojunction photocatalyst was
successfully prepared using a facile and practical hydrothermal
method. The MoS2 nanosheets were prepared by combining
1.21 g Na2MoO4�2H2O and 1.56 g CS(NH2)2 and heating at

180 1C for 24 h. Subsequently, the Bi2O3 solid rods were
attained using a typical synthesis procedure using 4.8 g of
Bi(NO3)3�5H2O. Finally, the Z-scheme MoS2/Bi2O3 heterojunc-
tion photocatalyst was prepared via a hydrothermal process.

X-ray diffractometry (XRD), scanning electron microscopy
(SEM), transmission electron microscopy (TEM), X-ray photo-
electron spectroscopy (XPS) and other measurements were used
to characterize the samples. Photocatalytic tests, trapping experi-
ments and photoelectrochemical measurements were all carried
out to detect the photocatalytic performance of the Z-scheme
MoS2/Bi2O3 heterojunction. The details of the experimental
process, characterization and measurements are described in
the ESI.†

3. Results and discussion
3.1. XRD analysis

The crystalline phase of the different samples was determined
using XRD analysis. As shown in Fig. 1a, the as-synthesized
Bi2O3 solid rods and MoS2 nanosheet samples present strong
diffraction peaks, which suggest a good crystalline phase for
these samples. The sharp diffraction peaks of Bi2O3 and MoS2

correspond with the standard spectra (Bi2O3 JCPDS No. 41-1449;
MoS2 JCPDS No. 37-1492) respectively, and no other impurity
diffraction signals were found. In addition, for the Z-scheme
MoS2/Bi2O3 heterojunction all of the diffraction peaks were
similar to that of pure MoS2 and Bi2O3, which means that the
Z-scheme MoS2/Bi2O3 heterojunction was successfully con-
structed. It should be noted that the diffraction peaks are
consistent with the (002) lattice plane of MoS2 and the (012)
lattice plane of Bi2O3 in the MoS2/Bi2O3 heterojunction and both
become weaker compared with those of the single MoS2 and
Bi2O3 respectively. This indicates that the intense interaction
between MoS2 and Bi2O3 appears in the Z-scheme MoS2/Bi2O3

heterojunction, and this is beneficial to the transport and
separation of charge carriers between them, and therefore the
photocatalytic activity is enhanced.14 On the one hand, it is the
same as the (012) lattice plane of Bi2O3, and the characteristic
peaks of (101) and (110) lattice plane of MoS2 are too weak in the
composite. This is mainly because the content of MoS2 is not

Fig. 1 (a) XRD patterns for the pure MoS2 nanosheets, Bi2O3 rods and 15%
MoS2/Bi2O3 heterojunction; (b) EDX spectrum of 15% MoS2/Bi2O3 hetero-
junction and the mass and atomic ratios of the 15% MoS2/Bi2O3 hetero-
junction (inset).
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significant in the composite. Therefore, there is no characteristic
peak for MoS2 observed in the Z-scheme MoS2/Bi2O3 heterojunc-
tion except for the peak for the (002) lattice plane. Moreover, an
elemental composition of 15% for the MoS2/Bi2O3 heterojunction
was detected from the EDX. As shown in Fig. 1b, the elements
Mo, S, Bi and O were observed in the Z-scheme MoS2/Bi2O3

heterojunction, confirming that the MoS2 nanosheets were
successfully combined with the Bi2O3 rods. The aforementioned
results further demonstrate that the MoS2 nanosheets were
deposited on the surface of Bi2O3.

3.2. Microstructural analysis

The morphology and microstructure of MoS2, Bi2O3 and the
MoS2/Bi2O3 heterojunction were characterized using SEM and
TEM analysis. From Fig. 2a, it can be observed that bare Bi2O3

possesses high uniform micron-sized rods with a diameter of
approximately 0.5 mm, and that pure MoS2 presents small
irregular nanosheets with a tendency to aggregate, as shown
in Fig. 2b. Fig. 2c and d show typical SEM and TEM images of
the coupling photocatalytic 15% MoS2/Bi2O3. From the above-
mentioned images, it can be seen that the MoS2 nanosheets
have been successfully absorbed onto the surface of the Bi2O3

micron-sized rods during the hydrothermal process and the
formation of MoS2 has no obvious effect on the Bi2O3. The SEM
image shown in Fig. 2c demonstrates that the small irregular
MoS2 nanosheets are uniformly distributed on the surface of
Bi2O3. Meanwhile, the TEM image shown in Fig. 2d also
describes the tight connection between the MoS2 nanosheets
and Bi2O3 micron-sized rods, which allows the interparticle
photo-induced transfer of the carriers. Furthermore, elemental
mapping has also been performed on the Z-scheme MoS2/Bi2O3

heterojunction, which also confirms the presence of all ele-
ments (Mo, S, Bi and O) in the heterojunction (Fig. 2e). This
result is in accordance with the EDX analysis, and reveals that
MoS2 has been successfully combined with Bi2O3. In addition,
high-resolution TEM (HRTEM) of the heterojunction was also

performed and is shown in Fig. S2 (ESI†). From this image the
lattice fringes of the MoS2 nanosheets in the MoS2/Bi2O3

heterojunction can be clearly observed and the lattice spacing
was measured to be 0.2604 nm, which corresponds with a
typical (100) plane for MoS2. Meanwhile, the (120) plane of
Bi2O3 with a lattice spacing of 0.32 nm was also found in the
MoS2/Bi2O3 heterojunction nanocomposite. Thus, the results of
the HRTEM analysis further prove that the composite structure
is a Z-scheme MoS2/Bi2O3 heterojunction.

3.3. XPS analysis

The surface chemical constituent of the Z-scheme MoS2/Bi2O3

heterojunctions and the chemical interactions between MoS2

and Bi2O3 were further examined using XPS. The XPS spectrum
of the Z-scheme MoS2/Bi2O3 heterojunction includes the ele-
ments Mo, S, Bi and O, and is shown with the XRD, EDX and
elemental mapping results in Fig. 3a. The XPS spectrum of
Mo 3d can be observed from Fig. 3b, and it reveals two strong
peaks at 229.1 and 232.5 eV belonging to Mo 3d5/2 and Mo 3d3/2

respectively, which obviously indicates that the valence state
of the molybdenum element is 4+ in the MoS2/Bi2O3

heterojunction.48 As shown in Fig. 3e, in the high resolution
XPS spectrum of Bi 4f, two peaks appearing at 158.6 and
164.2 eV are evident, corresponding to Bi 4f7/2 and Bi 4f5/2 in
the sample respectively.49,50 Meanwhile, the peaks at 161.8 and
162.9 eV can be ascribed to S 2p3/2 and S 2p1/2 because of the
spin orbit separation of the S element, which also certifies the
emergence of S2� in the final photocatalyst.51,52 The O 1s peaks
in Fig. 3d can be fitted to the two peaks at 529.9 and 531.3 eV, they
belong to the surface hydroxyl groups (Bi–O–H) and Bi–O bond in
the sample respectively.53 Fig. 3g displays the XPS pattern of S 2p,
there are two distinct peaks at 162.4 and 163.8 eV which are
matched with S 2p3/2 and S 2p1/2. Finally, it is worth noting that
the XPS spectrum of Mo 3d and Bi 4f is evidently shifted to a
higher binding energy (Fig. 3c and f) comparing with the pure

Fig. 2 SEM images of pure: (a) Bi2O3 rods; (b) single MoS2 nanosheets;
(c) 15% MoS2/Bi2O3 heterojunction; (d) TEM images of the 15% MoS2/Bi2O3

heterojunction; and (e) elemental mapping of the 15% MoS2/Bi2O3 hetero-
junction showing the presence of the constituent elements (Mo, S, Bi
and O).

Fig. 3 XPS spectra of the 15% MoS2/Bi2O3 heterojunction: (a) survey
spectrum; (b) and (c) Mo 3d; (d) O 1s; (e) and (f) Bi 4f; and (g) S 2p.
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MoS2 and Bi2O3, this may be due to the heterojunction inter-
action between MoS2 and Bi2O3.54 The above described results
prove the existence of a strong interaction between MoS2 and
Bi2O3 in the Z-scheme MoS2/Bi2O3 heterojunction, which could
promote the migration of an electron–hole pair, and also
increase the photocatalytic performance and stability.

3.4. UV-vis adsorption of the as-prepared photocatalysts

Using UV-vis diffusion reflectance spectra is a common method
to analyze the light absorption and energy band features of a
photocatalyst. Therefore, the UV-vis absorption spectra of the
different samples are shown in Fig. 4. As shown in Fig. 4a, the
absorption edge of Bi2O3 is approaching 440 nm, which exhi-
bits a photo-response to visible light. In comparison, the pure
MoS2 nanosheets present a broad absorption spectra because
of their black color, which indicates that they can absorb all of
the photons from visible light and this is similar to previously
reported results.13 Furthermore, after being added to MoS2, a
striking full spectral absorption can be observed in the absorp-
tion spectrum of the MoS2/Bi2O3 composite samples, which is
due to the transition of MoS2 and Bi2O3. Meanwhile, there are
other factors affecting the photocatalytic efficiency achieved,
such as the optical range, containment of the charge transfer,
specific surface area and the suppression of the recombination
of electron–hole pairs of the Z-scheme MoS2/Bi2O3 heterojunc-
tion. Moreover, in order to determine the relative band gap and
the position of Bi2O3, the band gap energy (Eg) of the sample
was counted using the following formula based on the differ-
ential reflectance spectroscopy (DRS) results:55 ahn = A(hn �
Eg)n/2. From Fig. 4b, the Eg of Bi2O3 counted using a plot of
(ahn)2 versus (hn) was found to be 2.82 eV.

Furthermore, in order to ensure the VB and CB of the edge
potential of the semiconductors, samples were analyzed using
XPS and previous reports. From Fig. 4c and d, it can be seen that
the VB of MoS2 and Bi2O3 were 1.52 and 2.98 eV, as detected
using XPS. By combining this with the result of the UV-vis,
the band gap of Bi2O3 was found to be 2.82 eV. Interestingly, the

abovementioned results correspond with previously published
reports. Thus, by combining the XPS spectral data and previous
reports, it can be determined that the band gap of MoS2 is 1.9 eV,
meanwhile, the conductance bands of MoS2 and Bi2O3 are�0.38
and 0.16 eV respectively.13,56 Based on the above described
findings, it can be confirmed that MoS2 and Bi2O3 can form a
perfect Z-scheme heterojunction.

3.5. Photocatalytic tests

The photocatalytic ability of Z-scheme MoS2/Bi2O3 heterojunc-
tion photocatalysts depend on the content of MoS2, therefore
different MoS2 contents in MoS2/Bi2O3 heterojunction photo-
catalysts must be studied for degrading MBT under the visible
light. As shown in Fig. 5a, it was noted that the bare MoS2 and
Bi2O3 display a poor photocatalytic performance, and only
13.5% and 37.0% of MBT is removed respectively. Moreover,
the photocatalytic degradation efficiency of MBT was 57.6%,
81.2%, 89.6%, 71.2% and 66.2% for the 5% MoS2/Bi2O3, 10%
MoS2/Bi2O3, 15% MoS2/Bi2O3, 20% MoS2/Bi2O3 and 25% MoS2/
Bi2O3 heterojunction after irradiation for 120 min. As expected,
the Z-scheme MoS2/Bi2O3 heterojunction photocatalysts exhibit
a better photocatalytic performance compared to simple MoS2

and Bi2O3, which can also obviously enhance the photocatalytic
performance. More interestingly, when the content of MoS2 is
15 wt% (0.02 g), the highest degradation rate achieved is 89.6%.
However, when the content of MoS2 grows to 25%, the degrada-
tion rate is only 66.2%. This is mainly due to the higher content
of MoS2 on the Bi2O3 rods which may restrain the absorption of
visible light and the light transmission capacity, after that, it
will cause a negative influence on the photocatalytic process.
On the contrary, with a lower content of MoS2, there is not
enough MoS2 nanosheets inserted into the Bi2O3 rods to create
the Z-scheme heterojunction, which will reduce the degradation
rate and refraction effect of the visible light. Thus, the reduced
photons migrating onto the surface of the photocatalysts may

Fig. 4 (a) UV-vis DRS of different samples; (b) the plots of (ahn)2 versus
(hn) of Bi2O3; (c) XPS valence band spectra of MoS2; and (d) Bi2O3.

Fig. 5 (a) Photocatalytic degradation of MBT in the presence of the
as-prepared samples under visible light irradiation; (b) absorption spectra
of MBT over the 15% MoS2/Bi2O3 heterojunction; (c) the pseudo-first-
order reaction kinetics; and (d) values of reaction rate constants over the
as-prepared samples.
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cause a relatively low removal efficiency. From Fig. 5b, it can be
observed that the absorbance peak intensity of the MBT solution
over the 15% MoS2/Bi2O3 composite gradually decreased during
the degradation process. Furthermore, the reaction kinetics of
MBT degradation over the Z-scheme heterojunction photo-
catalysts were investigated using the model of ln(C0/C) = kt, in
which the slope k is the apparent reaction rate constant (Fig. 5c
and d). Evidently, the Z-scheme MoS2/Bi2O3 heterojunctions
show a higher k value compared with pure MoS2 and Bi2O3, and
the 15% MoS2/Bi2O3 (0.01936 min�1) was about 15.6 and
5.1 times as high as that of MoS2 (0.00124 min�1) and Bi2O3

(0.00382 min�1) respectively. To further confirm the adsorption
of the catalysts, adsorption tests for MBT were also carried out
and the results are presented in Fig. S1 (ESI†). The above
described results all demonstrate that the 15% Z-scheme
MoS2/Bi2O3 heterojunction distinctly promotes the separation
efficiency of the charge carriers and mineralization of the MBT
molecules can be achieved.

It is important for the photocatalyst to be reusable and
stable to allow its practical application. Thus, to evaluate the
reusability and stability of the Z-scheme MoS2/Bi2O3 hetero-
junction, the 15% MoS2/Bi2O3 heterojunction was assessed via
the degradation of MBT under visible light irradiation. It can be
seen in Fig. 6a that there is no distinct inactivation in the
photocatalyst, which indicates that the 15% Z-scheme MoS2/
Bi2O3 heterojunction possesses a high stability. Furthermore,
in order to carefully detect the reusability and stability of the
photocatalysts, XRD characterization was performed before and
after the degradation process, the results are shown in Fig. 6b.
As expected, the catalyst does not show any obvious change in
the intensity after the degradation process, this means that the
15% Z-scheme MoS2/Bi2O3 heterojunction possesses an out-
standing photocatalytic recyclability and stability in practical
applications.

Moreover, it is well known that TC, as a universal antibiotic
drug, has greatly harmed the environment and food sources
owing to its excessive use in human and animals. Therefore, we
also evaluated the photocatalytic performance of the as pre-
pared samples via the degradation of TC under visible light.
Fig. 7a shows the visible-light photocatalytic degradation curves
of TC over pure MoS2, Bi2O3 rods and the 15% MoS2/Bi2O3

heterojunction. As expected, the 15% Z-scheme MoS2/Bi2O3

heterojunction exhibits the highest efficiency and a reduction
of 79.3% is achieved, which is a factor of 4.65 and 1.94 times
higher than that of simple MoS2 (18.6%) and Bi2O3 (40.8%)
after 120 min respectively. Meanwhile, as can be seen from
Fig. 7b, the characteristic absorption peak intensity of TC
increasingly declines and there is no shift of the maximum
absorption wavelength position at 357 nm. Furthermore, the
reaction kinetics of TC over different samples are shown in
Fig. S3a and b (ESI†). The rate constant for the 15% MoS2/Bi2O3

heterojunction is higher than that observed for pure MoS2 and
Bi2O3. Thus, these results all prove that the Z-scheme MoS2/
Bi2O3 heterojunctions have the ability to accelerate the separa-
tion efficiency of the charge carriers and improve the photo-
catalytic performance compared to pure MoS2 and Bi2O3.

In addition, RhB was chosen as a representative dye and model
pollutant to determine the universal effect of the Z-scheme MoS2/
Bi2O3 heterojunctions. As shown in Fig. 7c, 90% of RhB can be
removed by the 15% MoS2/Bi2O3 heterojunction under visible
light within 120 min and the degradation rate is higher than that

Fig. 6 (a) Five cycle degradation kinetic curves of MBT; (b) XRD patterns of 15% MoS2/Bi2O3 heterojunction after five reaction cycles.

Fig. 7 (a) Photocatalytic reduction curves for TC over the as-prepared
different samples; (b) absorption spectra of TC over the 15% MoS2/Bi2O3

composite; (c) photocatalytic degradation curves; and (d) absorbance
variations of RhB solution over the as-prepared different samples under
visible light.
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of pure MoS2 and Bi2O3. The inset in Fig. 7c shows the color
changes occurring every 20 min, it can be observed that the
color of the solutions changes gradually from pink to colorless.
Moreover, Fig. 7d reveals the absorbance variation of the RhB
solutions over the 15% Z-scheme MoS2/Bi2O3 heterojunction. It
is noted that the characteristic absorption peak intensity of RhB
(553 nm) distinctly decreases with each time interval. As with
the degradation of TC, the reaction kinetics of RhB over
different samples is shown in Fig. S3c and d (ESI†). As expected,
the rate constant for the 15% MoS2/Bi2O3 heterojunction is the
highest among all of the samples. Finally, the above described
degradation experiments demonstrate that the Z-scheme hetero-
junctions can greatly improve the photocatalytic performance for
the degradation of industrial and domestic pollutants under
visible light.

Fig. 8 shows the N2 adsorption–desorption isotherms for the
prepared samples. It is well known that the surface area
significantly affects the photocatalytic activity of photocatalysts,
and it was found that the adsorption–desorption isotherms
exhibited a classical type IV with a hysteresis loop. From Fig. 8a,
the Brunauer–Emmett–Teller (BET) surface area (SBET) of pure
Bi2O3 was found to be 8.5 m2 g�1, clearly revealing that pure
Bi2O3 has a low surface area. Compared with the pristine Bi2O3,
the SBET of the as-prepared 15% Z-scheme MoS2/Bi2O3 hetero-
junction photocatalyst was found to be 18.5 m2 g�1, and this
was larger than that found for the simple Bi2O3 (Fig. 8b). This
obviously indicates that the adsorption activity of 15% MoS2/
Bi2O3 and Bi2O3 conform well to the surface area. Therefore, the

photocatalytic activity of the 15% Z-scheme MoS2/Bi2O3 hetero-
junction is much higher than that of pure Bi2O3. This result
also indicates that the surface area of the photocatalysts is an
important factor that affects the photocatalytic activity.

3.6. Photocurrents and electrochemical impedance spectral
analyses

In order to further understand the transfer behavior of the
charge carriers in the heterojunctions, photocurrent experiments
were carried out. The photocurrent responses of the pure MoS2,
Bi2O3 and 15% Z-scheme MoS2/Bi2O3 heterojunction are shown
in Fig. 9a. Evidently, the 15% MoS2/Bi2O3 heterojunction gives
the best photocurrent response, which is 6.47 and 2.21 times
that of pristine MoS2 and Bi2O3. This result confirms that the
Z-scheme MoS2/Bi2O3 heterojunction has a lower recombination
rate for the charge carriers, which means the photocatalytic
performance was greatly enhanced. Moreover, after several
cycles, the steady and reproducible photocurrent response sug-
gests that the 15% Z-scheme MoS2/Bi2O3 heterojunction pos-
sesses a good photophysical stability. In order to further research
the interfacial charge transfer abilities of the photocatalysts, EIS
tests were performed. As shown in Fig. 9b, the radius of the 15%
MoS2/Bi2O3 heterojunction was the smallest compared to that of
pure MoS2 and Bi2O3, and it exhibits a faster interfacial charge
transfer rate in the Z-scheme MoS2/Bi2O3 heterojunctions. Thus,
the photocurrent and EIS results indicate that the 15% Z-scheme
MoS2/Bi2O3 heterojunction can efficiently control the recombina-
tion of the electron–hole pairs and the Z-scheme heterojunction

Fig. 8 N2 adsorption–desorption isotherms of the as-prepared samples.

Fig. 9 (a) Transient photocurrent response; and (b) electrochemical impedance spectroscopy of the as-prepared samples.
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structure can remarkably accelerate the charge transfer via intimate
contact between the MoS2 and Bi2O3, which also increases the
photocatalytic performance of the MoS2/Bi2O3 heterojunctions.

3.7. Intermediates and mineralization ability tests

The intermediates during the degradation of MBT were detected
using high performance liquid chromatography mass spectro-
metry (HPLC-MS) experiments. From Fig. 10a–c, it can be seen
that the peak at m/z = 167 of MBT reduces during the degrada-
tion reaction and had almost disappeared after two hours. All of
the results indicate that MBT was degraded into small mole-
cules, such as CO2 and H2O. Taking into account the deep
analysis of the photodegradation process, the possible inter-
mediate products were tested by the change in the measured
mass, which is shown in Fig. 10d. As can be observed in Fig. 10d,
the MBT A (m/z = 167) is fragmented into B (m/z = 187) by the
addition reaction. Then C (m/z = 169) is formed by losing the
–OH group by the elimination reaction. In the proceeding
reaction, D (m/z = 152) is fragmented by losing –NH2. After that,
D is further resolved to E (m/z = 110) by an addition reaction.
Next, F and G are created by wiping out –SH and by an addition
reaction. In the end, these small intermediate products may be
further degraded into H2O and CO2.

3.8. Trapping experiments and ESR

To gain a better understanding of the process mechanism of
the Z-scheme MoS2/Bi2O3 heterojunction, radical trapping tests
were carried out by adding the different trapping agents of
TEOA, IPA and Vc to catch holes (h+), hydroxyl radicals (�OH)
and the superoxide radical (�O2

�) respectively. As shown in
Fig. 11a and b, when Vc and TEOA were added to the MBT
solution, the photodegradation rate greatly reduced to 16.3%
and 25.7% when compared with the addition of no radical
scavengers, indicating that the �O2

� and h+ are major active
species in the process of removing MBT. Upon the addition of
IPA into the MBT solution, the degradation rate was 50.8%,
which decreased by almost 39% compared with no radical

scavengers being added. This implies that �OH is not the main
radical involved in the degradation of MBT. In order to further
confirm the emergence of the abovementioned active species,
the ESR technique was used to explain the appearance of the
�O2

� and �OH radicals within the photocatalytic processes.57,58

Fig. 11c exhibits the DMPO–�O2
� characteristic peaks of

MoS2, Bi2O3 and the 15% Z-scheme MoS2/Bi2O3 heterojunction
under visible light irradiation. It is worth noting that there are
no evident characteristic signals of DMPO–�O2

� in Bi2O3, which
suggests that pure Bi2O3 cannot form �O2

� radicals. In contrast
to the simple MoS2 and Bi2O3, the 15% MoS2/Bi2O3 heterojunc-
tion shows the strongest intensity, which indicates more �O2

�

can be generated in the photocatalytic degradation reaction.
Similarly, it was also observed that pristine Bi2O3 and 15% MoS2/
Bi2O3 heterojunction can create DMPO–�OH. There are four
characteristic peaks of DMPO–�OH (1 : 2 : 2 : 1 quartet pattern)
found in the ESR spectra (Fig. 11d). Obviously, the intensity of all
signals for the bare Bi2O3 are largely weaker than those of the
15% MoS2/Bi2O3 heterojunction, which means that the 15% Z-
scheme MoS2/Bi2O3 heterojunction can create more �OH active
species compared to the single Bi2O3. In summary, these results
demonstrate that all three active species play a significant role in
the removal reaction, and the degree of their effect on the MBT
degradation process is in the order �O2

� 4 h+ 4 �OH.

3.9. Possible photocatalytic reaction mechanism

In order to further comprehend the transfer method of the
photo-induced charges, a possible photocatalytic mechanism
of the Z-scheme MoS2/Bi2O3 heterojunction was proposed.
Hypothetically, as shown in Fig. 12, when the MoS2/Bi2O3

heterojunction is excited by visible light, the electrons move
from the CB of the MoS2 nanosheets to the CB of the Bi2O3 rods.
Meanwhile, the holes will transfer from the VB of the Bi2O3 to
the VB of the MoS2. However, in theory, the photo-induced

Fig. 10 m/z of degrading MBT over the 15% MoS2/Bi2O3 heterojunction:
(a) degradation during 30 min; (b) degradation in 1 h; (c) degradation in 2 h;
and (d) possible intermediate products of degradation of MBT over the 15%
MoS2/Bi2O3 heterojunction.

Fig. 11 (a and b) Photocatalytic degradation ratios of MBT using different
radical scavengers over the 15% MoS2/Bi2O3 heterojunction under visible
light irradiation. DMPO spin-trapping ESR spectra of MBT solutions after
visible light irradiation: (c) 15% MoS2/Bi2O3–CH3OH/DMPO; and (d) 15%
MoS2/Bi2O3–H2O/DMPO.
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electrons in the CB of Bi2O3 (0.16 eV vs. NHE) cannot react with
O2 to produce �O2

� (O2/�O2
�, �0.046 eV vs. NHE) and the holes

in the VB of MoS2 cannot oxidize OH� to yield �OH (OH�/�OH,
2.38 eV vs. NHE),59,60 the above described hypothesis goes
against the results of the electron spin resonance (ESR) tech-
nology and active species trapping experiments. Therefore, the
Z-scheme electron–hole pairs transfer methods are illustrated
in Fig. 12. On account of the fact that the Z-scheme MoS2/Bi2O3

heterojunction can be irradiated using visible light to generate
photo-induced electron–hole pairs, at the same time, the elec-
trons in the CB of Bi2O3 have a tendency to transfer and unite
with the holes in the VB of MoS2. Then, the more electrons that
are concentrated on the CB of MoS2 the more will further react
with O2 to generate more �O2

� and the photo-induced holes in
the VB of Bi2O3 can react with OH� to form more �OH. In other
words, the possible photocatalytic degradation is demonstrated
below in eqn (1)–(5):

MoS2 + hn - MoS2 (e�) + MoS2 (h+) (1)

Bi2O3 + hn - Bi2O3 (e�) + Bi2O3 (h+) (2)

MoS2 + e� + O2 - �O2
� (3)

Bi2O3 + h+ + OH� - �OH (4)

�O2
� + h+ + OH� + MBT/TC/RhB - degraded products

(5)

4. Conclusions

A novel Z-scheme MoS2/Bi2O3 heterojunction with MoS2

nanosheets on the surface of Bi2O3 rods was prepared for the
first time using a facile and practical hydrothermal method.
The outstanding sample of the 15% Z-scheme MoS2/Bi2O3

heterojunction gave the best photocatalytic performance, which
was almost 6.63 and 2.43 times higher than that of pure MoS2

and Bi2O3 for the degradation of MBT and 4.26 and 1.94 times
higher for the removal of TC. Furthermore, the 15% Z-scheme
MoS2/Bi2O3 heterojunction exhibited the highest photocatalytic
activity for the reduction of RhB, which can attain a 90% removal

efficiency within 120 min. In addition, the increase in the photo-
catalytic efficiency could be attributed to the combination of
Bi2O3 and MoS2 extending the light absorption and the for-
mation of Z-scheme MoS2/Bi2O3 heterojunction by the tight
face-to-face connection with a good energy band match between
the MoS2 and Bi2O3. The interfacial interaction between MoS2

and Bi2O3 can accelerate the separation of the photo-induced
carriers and amplify the specific surface area. Finally, this work
provides a novel design and preparation method for use with
other high performance Z-scheme heterojunctions for degrading
various industrial and domestic pollutants in water.
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