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Adamantane and dimethyladamantane were alkylated exclusively at the bridgehead position with olefin in the 
free-radical chain reaction initiated by di-tert- butyl peroxide. n-  Hexyl-, n- octyl-, cyclohexyl-, or cyclooctylada- 
mantane was prepared in moderate yield based on consumed olefin. The major by-product isolated was that of al- 
lylic coupling. Treatment of an adamantane with ethylene gave the corresponding bridgehead ethyladamantane 
in practically quantitative yield when the initial pressure of ethylene was low. With higher ethylene pressure, n- 
butyl- and n- hexyladamantanes were also formed. 

Adamantane often serves as an excellent probe for the 
investigation of aliphatic substitution because of its skele- 
tal stability? and its resistance to intramolecular rearrange- 
mentS2 Thus, the synthetic applications of many cationic 
and some f r e e - r a d i ~ a l ~ - ~  substitutions for the functionali- 
zation of adamantanes are very successful. 

The free-radical alkylation of dimethyladamantane7 
with an olefin in the presence of di-tert- butyl peroxide 
gave the corresponding l-alkyl-3,5-dimethyladamantane as 
the major product. Results are summarized in Table I. The 
important by-products obtained were the corresponding 1: 
2 adduct and the coupling product derived from the allylic 
radical. Thus, the radical alkylation was extended to ethy- 
lation of 1,3-dimethyladamantane with ethylene, which 
bears no allylic hydrogen (excluding the possibility of the 
formation of the allylic coupling product) but has a moder- 
ate tendency toward radical telomerization depending on 
the pressure of ethylene. The results are shown in Table 11. 
Yield of the ethylation of 1,3-dimethyladamantane (based 
on dimethyladamantane consumed) was excellent (89%) a t  
low ethylene pressure (2  kg/cm2). The telomerization 
(higher alkylation) became more important with the in- 
crease in ethylene pressure, and 1-n- butyl-3,5-dimethylad- 
amantane, 1-n- hexyl-3,5-dimethyladamantane, and l -n -  
octyl-3,5-dimethyladamantane were obtained with moder- 
ate ethylene pressure (2-10 kg/cm2). Similar results were 
also obtained for adamantane (see Table 111). 

Thus, the direct free-radical alkylation of 1,3-dimeth- 
yladamantane with an appropriate olefin is an excellent 
procedure. Other alkylation procedures of adamantane in 
the literature are (1) the Wurtz type synthesise giving al- 
kyladamantanes only in poor yield, (2) the Grignard cou- 
pling of adamantyl bromide with alkylmagnesiurn bro- 
mideg giving methyladamantane in excellent yield but con- 
siderably reduced yields with higher alkyl groups, and (3) 
the Friedel-Crafts type syntheseslo-l4 with moderate to  ex- 
cellent yields, but often accompanied by skeletal rearrange- 
ment of an alkyl group. 

The characteristics of the present alkylation are its re- 
giospecificity producing almost exclusively bridgehead rad- 
ical from 1,3-dimethyladamantane or adamantane and the 
very efficient chain transfer from the growing chain to 1,3- 
dimethyladamantane or adamantane. 

The observed regiospecificity was interpreted by the bul- 
kiness of the attacking (abstracting) radical.15 

A bulky attacking radical was observed to increase the 
bridgehead of reduced bridge reactivity ratio as shown in 
Table IV, because of reduced bridge reactivity, probably by 
the steric repulsion in a transition state. An intermediate 
radical derived from adamantyl and an olefin (1) is that of 
the secondary structure (except for the ethylene addition), 

Table I 
1: 1 Adducts of the Radical Addition of 

193-Dimethyladamantane with Various Olefinsa 
Yields 

Yields o f b  

1: 1 of 1:1 olefin 

adduct Molar adduct, dimer, 

R Olefin used Registry no. ratio C 96 % 

C,Hi, Hexene-1 592 -4 1 -6 1 9 0  
10 20 0 

C8HI, Octene -1 111 -66 -0 5 15  0 
10 17 0 

C,Hi, Cyclooctene 931 -88 -4 5 15  1 
10 26 2 

C,Hii Cyclohexene 110-83 -8 10 5 9  

=Reactions were initiated by DTBP at 150" and kept for 5 hr. 
* Yields were determined based upon the converted olefins. The 
yield of the 1:l adduct based on dimethyladamantane was prac- 
tically quantitative. c The ratio of dimethyladamantane to olefin. 

Table I1 
Products of the Radical Addition of Ethylene to 

1,3 -Dimet hyladamantanea 

I 
Me 

~~~~ 

(------Experiment ------, 
1 2 3 

Ethylene pressure, kg/cm2 2 5 10 
Conversion of dimethyl - 2 2 . 5  29.6 25 .3  

adamantane (%) 

Products Yield,* mol % 

1-Ethyl-3.5-dimethyl- 89.0 69.7 33.5 
adamantane (n = 1) 

adamantane (n = 2)  

adamantane (71 = 3) 

adamantane (n  = 4 )  

1 -Butyl-3,5 -dimethyl- 10.5 17.0 23.9 

1 -Hexyl -3.5 -dimethyl - 0.5 1.8 4.8 

l-Qctyl-3,5 -dimethyl- 0 0.4 1.1 

(n  = 5) 

a Reactions were initiated by DTBP at 130" and kept at a con- 
stant pressure of ethylene for 5 hr. * Yields were calculated based 
upon dimethyladamantane consumed. 
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Table 111 
Alkylation of Adamantane with Ethylene in Benzene 

(50 ml) in the Presence of DTBP (0.73 g) at 150” 
for 2 hr 

,-Initial pressure of ethylene, k g l c m ‘ 7  

5 10 20 

Adamantane ,  g 
used 13.65 13 .61  13.65 
r e c o v e r e d  11.63 n a 

1 -e thyladamantane  1. 18 0.58 0 .25  
1 -n -butyladamantane 0.46 0 .51  0.33 

P roduc t .  g 

1 -n -hexyladamantane  0 .034  0 .051  

a Recovery was practically quantitative. 

Table IV 
Effect of Bulkiness of an Abstracting Radical in 

Simple Brominations6 
Bridgehead 

Brominating Abmacting to  bridge 
reagent radical react.  ratio 

Br 2 *Br 2 .5  
CH2Br2  .CH2Br  9 
BrCC1, CC1 ,  27 

favoring the hydrogen  abstraction f rom t h e  br idgehead  po- 
sit ion of 1 ,3-d imethyladamantane  or adamantane. 

1,3-R2AdH + 3,5-R2Ad‘”CHR’dHR‘’ -----t 

3,5-R2Ad-‘” (major) + 3,5-R2Ad‘”CHR’CH2R’’ 

1 

R = H or CH, 

A substituent at the bridgehead (1 posit ion) lowers the 
reactivity of the 2 position profoundly  and that of the 4 
posit ion moderately.  While the reactivity of the 3 posi- 
tion was less affected by a subs t i t uen t ,  actually a smal l  ac- 
celeration by methyl was observed for the brominat ion  
wi th  NBS or  the chlorination wi th  CC14. 

For 1 ,3-d imethyladamantane ,  most of the bridge hydro- 
gens are doubly deac t iva ted ,  so that the reasonable as- 
sumption should be made that the abstraction of a bridge- 
head hydrogen  prevails over that of a bridge hydrogen. 

Experimental Section 
Materials and Apparatus. Commercially available 1 ,3-dimeth- 

yladamantane, adamantane, olefins (ethylene, hexene-l, octene-1, 
cyclohexene, and cyclooctene), and di-tert- butyl peroxide were 
used. All the materials except ethylene were purified by usual dis- 
tillation. Commercially available ethylene (99% pure) was used 
without further purification. 

Nmr spectra were measured with a Varian EM 360, 60 MHz, 
using TMS as an internal standard in CC14 solvent. Infrared spec- 
tra were measured with a Hitachi 215 spectrophotometer. Glc 
analysis was performed using a 0.3 X 200 cm column (Apiezon 
grease L, 5 and 10%). 
I-Alkyl-3,5-dimethyladamantane from Ethylene and 1,3- 

Dimethyladamantane. A mixture of 1,3-dimethyladamantane 
(16.435 g; 0.1 mol) and di-tert- butyl peroxide (0.730 g, 5 mmol) 
was placed in a 100-ml autoclave. After the replacement of air with 
ethylene, the initial pressure of ethylene was adjusted to  5 kg/cm2 
and the mixture was stirred a t  130’ for 5 hr. After cooling, the 
reaction products were isolated by distillation ~n uucuo and/or 
preparative gas chromatography. Four products (determined as 1- 
ethyl-, 1-butyl-, 1-hexyl-, and l-octyl-3,5-dimethyladamantane) 
were obtained, which amounted to 3.976, 1.110, 0.128, and 0.040 g, 

respectively (mol %: 69.7, 17.0, 1.8, and 0.4) and the combined 
yield was 89% based on adamantane consumed, determined by an- 
alytical glc. A higher homolog (n  2 5 )  could not be isolated but in 
some cases was obtained as a white precipitate, probably admixed 
with high polymer. Similarly, the alkylations of l$-dimethylada- 
mantane with higher initial pressures of ethylene were carried out. 

Alkylation of Adamantane with Ethylene. Similar alkylation 
was applied to  13.6 g (0.1 mol) of adamantane dissolved in 50 ml of 
benzene with ethylene of the initial pressure of 5 kg’cm2 in the 
presence of 0.73 g ( 5  X 10-3 mol) of di-tert- butyl peroxide at  150’ 
for 2 hr. Together with 11.63 g of recovered adamantane, 1.18 g of 
1-ethyladamantane (50% based on adamantane consumed) and 
0.46 g of 1-n- butyladamantane (17% based on reacted adaman- 
tane) were obtained. The combined yield of the alkylation based 
on ethylene was practically quantitative. Higher 1-alkyl homologs 
were present in the product only in trace amounts under the pres- 
ent condition. 1-Ethyl-, 1-n- butyl-, and 1-n- hexyladamantanes 
were identified with those from the relevant syntheses: l-ethyl- 
from 1-bromoadamantane and ethylmagnesium b r ~ m i d e , ~  1-n- 
butyl- from 1-bromoadamantane and thiophene with stannic chlo- 
ride followed by the Raney Ni hydrogeno ly~ i s ,~~  and 1-n-  hex- 
yladamantane from adamantane and 1-hexene in the presence of 
di-tert- butyl peroxide. 

Alkylation of adamantane a t  higher initial ethylene pressure 
under similar reaction conditions gave the following results: a t  10 
kg/cm2, ethylene, 1-ethyladamantane, 1-n- butyladamantane, and 
I-n- hexyladamantane in a molar ratio of 23:17:1, the combined 
yield of alkyladamantanes based on reacted adamantane was prac- 
tically quantitative; a t  20 kglcm2, ethylene, 1-ethyladamantane, 
1-n- butyladamantane, and 1-n- hexyladamantane in a molar ratio 
of 6.5:7.4:1, the combined yield was again practically quantitative. 
l-Alkyl-3,5-dimethyladamantanes from 1,3-Dimethylada- 

mantane and Olefins. A mixture of 1,3-dimethyladamantane, an 
olefin, and di-tert- butyl peroxide was placed in a flask and heated 
a t  a given temperature (between 110 and 150”). The initial molar 
ratio of dimethyladamantane to an olefin was in the range of 1-10 
and the amount of the initiator added was 5-50 mol % of the olefin. 
After the usual work-up, the 1:l adduct was isolated by the prepar- 
ative gas chromatography. Table I shows the results obtained for 
hexene-1, octene-1, cyclohexene, and cyclooctene. In the case of 
cyclooctene, the products consisted of two components (in a ratio 
of 3:l); the major one was found to be l-cyclooctyl-3,5-dimethyl- 
adamantane, but the structure of the minor one has not yet been 
determined. 

Physical and Spectral Properties of P-Alkyl-3,5-dimeth- 
yladamantanes. l-Ethyl-3,5-dimethyladamantane: bp 65-67’ 
(5 mm); n Z 5 D  1.4804; nmr 6 0.80 (s, 6 H, CHB, CH3), 0.80 (t, 3 H,  
C H ~ C N B ) ,  2.00 (br, 1 H ,  bridgehead proton), and 0.9-1.7 ppm (m, 
12 H,  remaining adamantyl protons); mass spectrum, mle (relative 
intensity) 192 (M+, 2), 177 (M - 15, l l ) ,  163 (M - 29, loo), 107 (M 
- 85, 70). 
1-n -Butyl-3,5-dimethyladamantane: bp 123-124’ (9 mm): 

n Z 5 D  1.4813; nmr 6 0.80 (s: 6 H, two CH3), 0.89 (t, 3 H, CH&H3), 
2.00 (br, 1 H, bridgehead proton), and 1.0-1.5 ppm (three sharp 
peaks centered a t  1.09, 1.27, and 1.30, 18 H, remaining alkyl and 
adamantyl protons); mass spectrum, m/e 220 (M+, l), 205 (M - 

1-n -Hexyl-3,5-dimethyIadamantane: bp 108-108.5’ (0.9 
mm); n Z 5 D  1.4807; nmr 6 0.80 (5, 6 H,  two CH3’s), 2.00 (br, 1 H,  
bridgehead proton); mass spectrum, mle 248 (M+, l), 233 (M - 15, 

1-n -Octyl-3,5-dimethyladamantane: n 2 j D  1.4802; nmr 6 0.76 
(t, 3 H, (CH&CH3), 0.78 (s, 6 H ,  two CHa), 2.00 (br, 1 H, bridge- 
head proton), 0.9-1.6 ppm (m, 26 H, remaining alkyl and ada- 
mantyl protons); mass spectrum, mle 276 (M+, l ) ,  231 (M - 15, l), 
163 (M - 83,100),107 (M - 169,341. 
l-Cyclohexyl-3,5-dimethyladamantane: n Z 5  D 1.5137; nmr 6 

0.80 (s, 6 H,  two CH3), 1.73 (br, 1 H ,  cyclohexyl tertiary proton), 
2.00 (br, 1 H, bridgehead proton), 0.9-1.5 ppm (m, 24 H, remaining 
alkyl and adamantyl protons); mass spectrum, mle 246 (M+, l), 
244 (M - 2, l), 231 (M - 15, l),  163 (M - 83, loo), 107 (M - 139, 
34). 
l-Cyclooctyl-1,5-dimethyladamantane. This compound was 

contaminated with a small amount of an impurity assumed to be 
l-cyclooctenyl-1,5-dimethyladamantane. Gas chromatographic 
separation gave the titled compound in a practically pure state: 
n Z 5 D  1.5175; nmr 6 0.80 (6 H, two CHs), multiplets centered a t  
1.11, 1.30, 1.56, and 2.08 ppm; mass spectrum, mle 274 (M+, 2), 
272 (M - 2, 2),  244 (M - 30, 5), 163 (M - 111, 1001, 149 (M - 125, 
51, 135 (M .- 139, 25), 107 (M - 1.67, 34). 

15, 6), 163 (M - 57, loo), 107 (M - 113,43). 

61, 163 (M - 85, loo), 107 (M - 141, 67). 
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A series of %alkyl-, 2-phenyl-, and 2-halo-substi tuted 2-adamantyl cations were obtained in FSO:IH, FS03H 
SbFj, and S b F j  (S02ClF or  Son)  solutions at -78' and their 'H and 13C nmr spectra were studied. Ter t iary  2- 

adamantyl cations, un l ike the parent secondary 2-adamantyl cation which immediately undergoes intermolecular 
rearrangement to  the bridgehead 1-adamantyl cation, show no skeletal rearrangement in superacidic media. 2p-T 
conjugation between the phenyl  T system and the empty 2p orb i ta l  a t  the carbenium center in 2-phenyl-2-ada- 
m a n t y l  cation was found impor tant .  Halogen back donation (n-2p conjugation) induced by the halogen unshared 
electron pairs in 2-halo-2-adamantyl cations was found t o  increase in accordance w i t h  the increasing order of 
halogen electronegativity Br < C1 < F. 

The observation and study of 1-adamantyl cations2 in 
strongly acidic media in our laboratory prompted interest 
in the study of 2-adamantyl cations. These ions have simi- 
lar rigidity but bear positive charge a t  the secondary, non- 
bridgehead position of the adamantane system. The parent 
2-adamantyl cation 1-H has thus far not been directly ob- 
served. The reason is that fast intermolecular hydride shift 
takes place immediately after the relatively unstable secon- 
dary ion 1-H is formed, giving the more stable tertiary 
bridgehead 1-adamantyl cation 2.334 

3 1-H 
S = OH. C1. Br or F 

2 

2-Methyl-2-adamantyi cation is, however, stable in 
strong acid solutions (in HzS04, FS03H, or FS03H-SbFj) 
and shows no tendency to interc0nvert.j Many rearrange- 
ments involving apparent 1,2-hydride shifts in adamantane 
systems are now known t o  take place intermolecularly. ~6 

The interconversion of 2-methyl- and l-methyladaman- 
tane, however, was shown to proceed intramolecularly in- 
volving rearrangement of 2-methyl-2-adamantyl cation to  
the 4-protoadamantyl cation followed by a rearrangement 
back to the adamantyl skeleton.4b 

Although a series of 1-adamantyl cations have been pre- 
pared and characterized,2 2-substituted-2-adamantyl cat- 
ions have not yet been reported in the literature. We, 
therefore, undertook the preparation of a series of 2-substi- 
tuted-2-adamantyi cations and the study of their structure 
and stability in superacidic media. Proton and carbon-13 
nmr spectra of 2-adamantyl cations including 2-alkyl-, 2 -  
phenyl-, and 2-halo-substituted ions were obtained. 


