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ABSTRACT: The first aminomethylation of oxabenzonorbornadienes
using dual photoredox/nickel catalysis has been disclosed. This cascade
reaction allowed the preparation of the cis-aminomethyl dihydronaph-
thalenols without any prefunctionalization or any use of nucleophilic
organometallic species. The control of the regio- and stereoselectivity might be explained by a sequence involving insertion of
nickel(0) into the C−O bond followed by the formation of a π-allyl intermediate.

Metal-catalyzed ring-opening reactions of oxabicyclic
derivatives have been an intense area of research in

the last 20 years.1 The ring-opened derivatives are important
and useful compounds as functionalized intermediates in
natural product synthesis and as motifs in medicinal
chemistry.2 Such ring-opening reactions can be carried out
with a variety of nucleophiles, including hydride, (non)-
stabilized carbanions, alcohols, amines, and carboxylates, in the
presence of nickel,3 palladium,4 copper,5 rhodium,6,7 and
cobalt8 complexes to generate enantioenriched dihydronaph-
thalenes (Scheme 1).

To date, there have been few examples of the introduction of
nucleophiles bearing a heteroatom at the α-position in such
ring-opening processes.9 However, single-electron oxidation of
neutral organic compounds is a known and straightforward
way to generate highly reactive radical intermediates. As an
example, single-electron oxidation of amines via (photo-
induced) electron transfer between excited molecules or
oxidants and amines provides access to synthetically useful
α-aminoalkyl radicals.10 Such oxidation to the radical cation
also increases the acidity of the α-amino C−H bond and
lowers the α-CH BDE.10b After subsequent deprotonation, the
resulting α-aminoalkyl radical can be engaged in various
reactions.10

The development of a mild, general, and efficient approach
to build complex molecular structures is always an important

concern in synthetic organic chemistry.11 Over the last few
decades, the quest for sustainable and environmentally friendly
technologies has led to an increasing interest in green
chemistry. Among the new approaches, organic photo-
chemistry appears as a valuable application since light can be
seen as a clean and traceless reagent. Photoinduced redox
processes using visible light offer a variety of catalytic
transformations, and new processes appear very frequently in
the literature. Moreover, photochemical methods and catalytic
reactions can complement each other in terms of scope and
chemo- and stereoselectivities.12−14 The recent literature
demonstrates that this preparative toolbox is expanding
substantially, but there are still opportunities to develop new
reactions and to introduce new substrates in photoredox
reactions.
Previous studies by our group demonstrated that the ring

opening of oxa- or azabicyclic derivatives was not successful
with free radical species. However, recent examples in
photoredox chemistry have shown that a radical process can
be combined with an organometallic coupling process.15 The
photogenerated amino radical could then be intercepted by an
organometallic complex (e.g., a nickel complex), and the new
alkylative ring opening of oxabenzonorbornadiene could be
anticipated with this in situ-generated aminomethyl organo-
metallic species.15c,d

In this contribution, we report the ring opening reaction of
oxabicyclic derivatives with methylamine derivatives under
visible-light activation and nickel catalysis (Scheme 2).16 We
considered that (i) the dual catalysis strategy would be relevant
if it were successful, as this approach avoids the usually
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Scheme 1. Transition-Metal-Catalyzed Nucleophile
Addition−Ring Opening of Heterobicyclic Alkenes

Letterpubs.acs.org/OrgLett

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acs.orglett.0c00593
Org. Lett. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

K
A

R
O

L
IN

SK
A

 I
N

ST
 o

n 
M

ar
ch

 2
, 2

02
0 

at
 1

9:
37

:5
5 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Abdoul+G.+Diallo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Roy"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sylvain+Gaillard"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+Lautens"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jean-Luc+Renaud"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.0c00593&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c00593?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c00593?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c00593?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c00593?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c00593?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c00593?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c00593?fig=sch1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.0c00593?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf


inevitable prefunctionalization of substrates and the formation
of the undesirable toxic wastes, and (ii) it would open a
straightforward access to aminomethyl dihydronaphthalenols,
whose synthesis is still a challenge in organic chemistry.
At the outset, we chose the aminomethylation of

oxabenzonorbornadiene 1a (1 equiv) with dimethylamine 2a
as a model reaction for the optimization of the reaction
conditions (Tables 1 and S1−S6). On the basis of previous
reports,10 4-CzIPN was selected as the photosensitizer (PS)
because of its ability to oxidize alkylamines (E1/2 = +1.1−1.2 V

vs SCE, E1/2(PS*/PS
−) = +1.35 V vs SCE) and its lower cost

compared with iridium-based photocatalysts.17 In the presence
of 2 mol % 4-CzIPN, 5 mol % [Ni(bpy)Cl2], 10 mol %
Zn(OTf)2, and DBU (0.5 equiv) in DMF (0.1 M) at room
temperature under blue-light irradiation for 24 h, 2a reacted
with 1a to furnish the alkylated ring-opening adduct 3a in 90%
conversion and 80% isolated yield (entry 1, Table 1). The
reductive ring-opening product 3′a was also obtained under
these conditions in 10% conversion. The side-product
formation might be explained by a competitive reaction
between a nickel(0) complex and an acid (DBU·H+) to
generate a nickel hydride species. Without light, photocatalyst,
or nickel catalyst, no reaction occurred (entries 2−4, Table 1).
These results ruled out the free radical addition, as suggested
by our initial observations. The ligand on the nickel played a
crucial role in the catalytic activity. Replacing the bipyridine
(bpy) ligand by a phosphine led to a decrease in both the
reactivity and the selectivity (entries 5 and 6, Table 1). The
reductive ring-opening adduct was favored with phosphine
ligands (entries 5 and 6, Table 1). The electron-deficient
dipyridine amine dCF3bpy also provided the alkylated ring-
opening product in lower yield, while the often-used dtbbpy
ligand furnished both ring-opening adducts 3a and 3′a with
lower conversion (85%) and lower selectivity (entries 7 and 8,
Table 1). In addition to nickel complexes, palladium and
cobalt precatalysts have also been introduced in dual
catalysis.14 Although Rovis recently reported the amino-
methylation of dienes via photoredox/low-valent cobalt
catalysis,18 no ring-opening adduct was formed with a
palladium or cobalt complex as the cocatalyst (entries 10
and 11, Table 1). The amount of aniline 2a drives the
formation of 3a over 3′a to some extent, and an increase in the
amount of 2a favored the aminomethylated product (entries 1,
13, and 14, Table 1). Any other modification of the reaction
conditions (use of a ruthenium complex or 4-CzTPN as the
PS, of other solvents, bases, Lewis acids, etc.) had a negative
effect on both the conversion and the selectivity for 3a. A NOE
analysis confirmed the structure of 3a, including the regio- and
cis stereoselectivity.
With these optimized reaction conditions in hand, we

explored the scope of this unprecedented ring-opening
reaction. Various substituted oxabenzonorbornadienes 1 were
initially evaluated (Scheme 3).
Oxabenzonorbornadienes bearing electron-donating sub-

stituents (e.g., Me and MeO) within the aromatic fragment
provided the corresponding ring-opening adducts 3b−d in
good yields (63−68%), while electron-withdrawing substitu-
ents lowered the chemical yield (3e) (Scheme 3). Dibromo-
substituted oxabenzonorbornadienes were nonreactive under
these dual catalysis conditions (Scheme 3). In all of these
examples, apart from the formation of the reductive ring-
opening adduct, no dehydration product was observed, and the
cis-1,2-addition compounds were exclusively formed. The syn-
1,2-adduct 3f was also obtained from the disubstituted
bridgehead oxabenzonorbornadiene, albeit in a modest 20%
yield and 44% conversion (Scheme 3). Unsymmetrically
substituted oxabenzonorbornadienes were also introduced.
The ring-opening adducts 3g−j were isolated in moderate to
good yields (50−70%) but mainly as 1:1 mixtures of the two
possible regioisomers, except for 3i, for which a 9:1 ratio was
observed (Scheme 3). The low control of the regioselectivity
might be explained by inefficient steric interactions between
the substituents and the nickel complex (see the proposed

Scheme 2. Outline of Aminomethylation/Ring Opening of
Oxabenzonorbornadienes Merging Photoredox and Nickel
Catalysis

Table 1. Optimization of the Reaction Conditionsa

aGeneral conditions: 1a (0.2 mmol), 4-CzIPN (2 mol %),
[Ni(bpy)Cl2] (5 mol %), DBU (0.1 mmol), 2a (0.6 mmol), DMF
(4 mL, 0.1 M), 34 W Kessil blue LED lamp, rt, 24 h. bConversions
were determined by 1H NMR analysis of the crude mixtures. cThe
yield in parentheses is based on the isolated product.
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mechanism below). The syn-1,2-adduct 3k was isolated from
the monosubstituted bridgehead oxabenzonorbornadiene in
70% yield (Scheme 3).
Substitution on the aniline motif does not hamper the

reactivity and the selectivity (Scheme 3). Not only N,N-
dimethylanilines but also N-benzyl- and N-methylaniline could
be used in the photoredox process, and the adducts 4a−j were
isolated in 47−80% yield (Scheme 3). Interestingly, the α-
aminomethyl radical was selectively generated to furnish 4a
and 4b in 54% and 57% yield, respectively, without oxidation
of the benzylic position or the ethyl substituent. Electron-
donating and electron-withdrawing substituents on the
aromatic ring were tolerated. Compounds 4a, 4b, 4e, 4f, and
4j were isolated when [Ir(dF(CF3)ppy)2(bpy)]PF6 was used
as the photocatalyst. No reaction was observed with 4-CzIPN.
At present, no clear argument can be given to explain these

results. The two photocatalysts have almost the same oxidizing
potential and are able to promote the SET oxidation process.
Azabenzonorbornadienes could be also used in this tandem

process under the same reaction conditions, but in acetonitrile
instead of DMF. The corresponding diamino compound 3l
was isolated in 70% yield (Scheme 4).
To gain some insight into the mechanism, radical quenching

reactions and spectroscopic investigations were performed.
When 2 equiv of TEMPO was added to the reaction medium

Scheme 3. Aminomethylation of Oxabenzonorbornadienes 1a

aGeneral conditions: 1 (0.4 mmol), 4-CzIPN (2 mol %), [Ni(bpy)Cl2] (5 mol %), DBU (0.2 mmol), 2 (1.2 mmol), DMF (4 mL, 0.1 M), 34 W
Kessil blue LED lamp, rt, 24 h. b[Ir(dF(CF3)ppy)2(bpy)]PF6 was used as the photocalyst (1 mol %) for 48 h.

Scheme 4. Aminomethylation/Ring Opening of
Azabenzonorbornadienes
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under the optimized conditions, no desired product 3a was
detected, indicating that a radical is involved in the process.
Two pathways can then be suggested to initiate the catalytic
ring-opening reaction. First, the aniline might be oxidized into
a radical cation; subsequent deprotonation with DBU could
then generate the α-aminoalkyl radical (route (a) in Figure 1).

A second route might be an initial oxidation of DBU. The
generated radical cation could be able to abstract hydride from
the N-methylaniline and produce the α-aminoalkyl radical
(route (b) in Figure 1). To discriminate between the two
pathways, Stern−Volmer quenching experiments were carried
out (Figure S2). Aniline appears to be an efficient quencher of
the delayed fluorescence of 4-CzIPN, while DBU is a modest
quencher. This observation indicates that the rate of the aniline
oxidation by the photocatalyst is higher than that of DBU in
the catalytic cycle, and consequently, the aminoalkyl radical
might be formed by oxidation of the aniline followed by
deprotonation by DBU (route (a) in Figure 1). A second set of
Stern−Volmer experiments revealed that neither [Ni(bpy)Cl2]
nor 1a are quenchers, i.e., there is no reduction of the metal
center and no formation of a radical on the oxygen-bridged
compound (Figure S2).
Three main pathways can be suggested for the ring opening.

The first one involves carbometalation followed by the ring
opening. In this scenario, the sterically hindered organometallic
species would add on the less encumbered carbon atom (route
A in Scheme 5). A second possibility is a π-allyl mechanism. In
this sequence, with a monosubstituted oxabicyclic derivative at
the bridgehead, C−O bond breaking would occur on the more
substituted carbon atom, and the metal and alcoholate would
be on opposite sides (route B in Scheme 5). The final
reductive elimination would deliver a 1,2-anti product bearing
a trisubstituted alkene. The last hypothesis is based on initial
insertion into the C−O bond followed by reductive
elimination leading to the 1,2-syn product bearing a
trisubstituted alkene (route C in Scheme 5).16 As in route B,
the ionization should occur on the most substituted carbon
atom. Experimentally, from the monosubstituted bridgehead
oxabenzonorbornadiene, 3k was obtained regio- and stereo-
selectively. This result favors the third scenario (Scheme 5)
and is in line with the DFT calculations reported by Molander
and co-workers.16

On the basis of the above-mentioned results, the following
mechanism could be postulated. After excitation under blue-
light irradiation, the photosensitizer could oxidize aniline 2a to
give the radical cation. The latter would furnish α-aminoalkyl
radical 2a′ after deprotonation by DBU (Scheme 5). The
reduced PS− could then reduce the nickel(II) complex to
nickel(0), regenerating the photocatalyst and closing the first
catalytic cycle (E1/2(Ni(II)/Ni(0)) = −1.2 V vs SCE in DMF,
E1/2(PS/PS

−) = −1.21 V vs SCE). This nickel(0) synthesis
could also explain the undesired ring-opening reduction via a
nickel(II)−hydride intermediate.3a,b Oxidative addition of the
nickel(0) into the C−O bond, facilitated by Zn(OTf)2,

4c could

provide an initial σ-allyl intermediate, and then a π-allyl
intermediate (Scheme 5). 2a′ could be intercepted at this
stage, leading to a nickel(III) intermediate (Scheme 5). Finally,
reductive elimination followed by protonation of the alcoholate
would liberate 3a and a nickel(I) complex, which can be
reduced by PS− and reenter in the second catalytic cycle
(Scheme 5).
In conclusion, we have disclosed a regio- and diastereose-

lective aminomethylation of oxabenzonorbornadienes by
merging photoredox and nickel catalysis. Various substituents
on the aniline or the oxabenzonorbornadiene are tolerated.
Mechanistic studies revealed first that the α-aminomethyl
radical is formed by oxidation of the amine followed by
deprotonation. Second, the ring opening may evolve through
insertion of a nickel(0) complex into the easily ionized C−O
bond and subsequent formation of a π-allyl intermediate.
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