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ABSTRACT: The cleavage of C-O linkages of aryl ethers into aromatic platform compounds is 

a challenge reaction but of great importance for sustainable future. Herein, we reported the 

efficient H2 assisted C-O bond cleavage of diphenyl ether (DPE) in aqueous phase over 

ultrasmall RuPd bimetallic NPs supported on amine-rich silica hollow nanospheres (NH2-SiO2). 

RuPd5/NH2-SiO2 with TOF of 172 h-1 and C-O cleavage selectivity of 99% outperformed the 

corresponding monometallic counterparts and is among the most active solid catalysts for C-O 

bond cleavage of DPE. The control experiments and characterization results showed that the 

effective isolation of Ru sites and optimized H2 dissociation ability mainly contributed to the 

enhanced catalytic performance of RuPd bimetallic NPs, in which Ru and Pd worked 

cooperatively with Ru sites for DPE activation and Pd sites for H2 dissociation. The alloying two 
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or multi metal atoms provides an efficient approach for designing high performance catalysts for 

chemical transformations.

KEYWORDS: biomass, RuPd, bimetallic alloy, diphenyl ether, hydrogenolysis, hydrolysis.

1. INTRODUCTION 

Lignin composing nearly 30% of non-fossil organic carbon on Earth is an important aromatic 

biopolymer.[1] Transformation of lignin and its derivatives into fuels and chemicals is of great 

importance for sustainable future.[2] Up to date, cleavage of C-O linkages, accounting for two-

thirds to three-quarters of all linkages in lignin, using H2 over metal catalysts is regarded as an 

effective way to transform lignin into aromatic platform compounds.[3] 
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Scheme 1. Summarized possible reaction pathways of H2 assisted C-O bond cleavage of 

diphenyl ether in water on the basis of literature reports.

The 4-O-5 linkage (bond dissociation energy of 314 kJ mol-1) is among the strongest and 

abundant C-O bonds in lignin.[1b,4] Diphenyl ether (DPE) was generally selected as the simplest 

model compound of 4-O-5 linkage to investigate the C-O bond cleavage chemistry. Hydrogen 
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assisted DPE cleavage over homogeneous or heterogeneous metal catalysts is very complicated.[5] 

Generally, it involves competitive hydrogenolysis, (reductive) hydrolysis and hydrogenation on a 

heterogeneous metal surface in water (Scheme 1).[5b,5c] 

Due to the complicated reaction pathways, selective cleavage of C-O bond of DPE is very 

challenge. One of the breakthroughs was made by Sergeev et al. and they obtained 99% 

selectivity to C-O bond cleavage using N-heterocyclic carbene complex for hydrogenolysis of 

DPE in the presence of NaOtBu.[6] In view of the product separation, catalysts handling and 

reusability, a heterogeneous catalytic process is more attractive. Solid catalysts based on Pd,[5b,7] 

Pt,[8] Rh,[9] Ru,[10] Ni,[5c,11] and bimetallic catalysts[12] were developed for cleavage the C-O bond 

of DPE in traditional solvents or in the supercritical CO2-H2O medium. TiN-Ni was reported to 

be efficient for selective hydrogenolysis of diaryl ethers, however, only 58% selectivity to C-O 

bond cleavage product was obtained using a batch reactor at 125 oC for DPE.[11d] Lercher et al.[5b] 

reported reductive hydrolysis of DPE with C-O bond cleavage selectivity of 90% (88% reductive 

hydrolysis selectivity and 2% hydrogenolysis selectivity) using Pd/C as a catalyst at 200 C and 

40 bar H2. Though different types of solid catalysts have been reported, their selectivity and 

activity towards C-O bond cleavage of DPE still need to be further improved, especially under 

mild reaction conditions. 

To improve the selectivity of C-O bond cleavage, the hydrogenation of aromatic ring of aryl 

ether should be inhibited due to the fully or partially hydrogenated dimeric compounds 

((cyclohexyloxy)benzene (CHPE) and dicyclohexyl ether (DCHE) in DPE transformation) do 

not easily go further C-O bond cleavage.[5c,11a] The straightforward approach to improve C-O 

bond cleavage selectivity of DPE is to tune the electronic and surface structure of metal 

nanoparticles (NPs) by alloying.[13] Bimetallic nanocatalysts usually exhibit improved catalytic 

Page 3 of 31

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

performance over their monometallic counterparts because the combination of two metal atoms 

could not only induce electronic and geometric effect but also generate the synergistic effect.[14] 

Previously, the promotion effect of Ni-based bimetallic nanocatalysts[10d,12b,12d] have been 

reported for C-O bond cleavage of aryl ether, however, the activity and selectivity is still not 

very high possibly due to the intrinsic property of Ni. 

Herein, RuPd bimetallic nanocatalysts were chosen for C-O bond cleavage of DPE 

considering that Ru NPs are very active in hydrogenolysis reactions and Pd NPs possess high H2 

activation ability.[15] The RuPd/NH2-SiO2 exhibited remarkably enhanced activity and selectivity 

in comparison with Ru/NH2-SiO2 and Pd/NH2-SiO2. The alloying effect on the catalytic 

performance of RuPd/NH2-SiO2 was elucidated using RuAu/NH2-SiO2 as the control catalysts 

and characterizations such as the XPS, in situ FT-IR of CO adsorption and H2-D2 exchange 

experiments. 

2. RESULTS AND DISCUSSION

Our group reported previously that amine groups have high binding affinity for metal cations 

to afford ultrafine metal NPs.[16] Here, amine-rich silica hollow nanospheres (NH2-SiO2) were 

used as supports, which were prepared via one-pot synthesis method with tetraethoxysilane 

(TEOS) and (3-aminopropyl)triethoxysilane (APTES) as silane precursors. The characterization 

results showed that NH2-SiO2 hollow nanospheres with particle size of 100~200 nm had the 

Brunauer-Emmett-Teller (BET) surface area of 156 m2 g-1, pore size of 15 nm and N content of 

3.85 mmol g-1 (Figure S1-S3 and Table S1). 

RuPdx bimetallic NPs were deposited on NH2-SiO2 by the wet impregnation method using 

NaBH4 as reductant (x denotes Pd/Ru molar ratio). ICP-AES analysis showed the metal contents 

of RuPdx/NH2-SiO2 were almost the same as expected (Table S2). The TEM images clarified the 
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uniform distribution of RuPdx NPs on NH2-SiO2 (Figure 1, Figure S4 and Figure S5). The 

particle size of Ru was 2.5 nm and RuPdx had relatively smaller particle size of 2.0 to 2.2 nm, 

which is possibility due to the strong interaction between the amine groups and metal cations.[17] 

In the following discussion, the influence of particle size could be excluded. The High-angle 

annular dark field scanning transmission electron microscopy (HAADF-STEM) image of the 

representative RuPd5/NH2-SiO2 further confirmed that RuPd5 NPs (2.1 nm) are uniformly 

dispersed on NH2-SiO2 (Figure 1D). The energy dispersive X-ray spectroscopy (EDS) results 

also showed that the Ru and Pd are homogeneously distributed on NH2-SiO2 (Figure 1F and 

1G). The lattice fringes of RuPd5/NH2-SiO2 is 0.220 nm, which is in agreement with the (111) 

crystal plane of Pd. It seems that the face centered cubic packing structure of Pd is unaffected by 

alloying with Ru, possibly because of large difference in reduction kinetics and big miscibility 

gap between Pd and Ru.[18] EDS line scanning analysis verified that the Ru atoms were enriched 

on the surface of RuPd5 NPs (Figure S7).

All catalysts are active toward C-O bond cleavage of DPE with monomers (benzene, 

cyclohexane, cyclohexanol, cyclohexone and phenol) as main products and dimers, cyclohexyl 

ether (CHPE) and dicyclohexyl ether (DCHE), as by products (Figure 2A and Table S3). CHPE 

and DCHE were generated by hydrogenation of aromatic ring of DPE without C-O bond 

cleavage. Compounds containing one C6 ring structure derived from C-O bond cleavage were 

denoted as monomers. In the following discussion, the selectivity to C-O bond cleavage 

designated monomers selectivity. Ru/NH2-SiO2 afforded 36% conversion with 94% selectivity to 

monomers and Pd/NH2-SiO2 gave only negligible conversion (6%) and low selectivity (36%). 

RuPdx/NH2-SiO2 (x = 1, 5, 9) exhibited obviously enhanced activity over Ru/NH2-SiO2 or 

Pd/NH2-SiO2, showing the positive effect of alloying Ru and Pd with appropriate Pd/Ru ratio. 
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6

The apparent activation energies of H2 assisted DPE cleavage were measured to be 49 kJ mol-1 

and 43 kJ mol-1 respectively for Ru/NH2-SiO2 and RuPd5/NH2-SiO2 on the basis of the Arrhenius 

plots (Figure S9), further confirming the above results. The selectivity to monomers of Ru/NH2-

SiO2 and RuPdx/NH2-SiO2 (x = 0.33, 1) is similar and varied in the range of 94-96%. 

RuPdx/NH2-SiO2 (x = 5, 9) afforded the highest monomers selectivity of 99%. RuPd20/NH2-SiO2 

only afforded selectivity of 87%. This suggests that the high monomers selectivity could be 

obtained within a narrow range of Pd/Ru ratio.

A

1 2 3 4
nm

B

1 2 3
nm

C

1 2 3
nm

D

E F G H

Ru Pd

Figure 1. TEM images of (A) Ru/NH2-SiO2, (B) Pd/NH2-SiO2 and (C) RuPd5/NH2-SiO2. (D) 

and (E) The HAADF-STEM image of RuPd5/NH2-SiO2. (F) Ru and (G) Pd STEM-EDS maps 

for the panel E of RuPd5/NH2-SiO2. (H) Reconstructed overlay images of the maps shown in 

panels F and G: green, Ru; red, Pd. The insets in (A), (B) and (C) show particle size distribution 

and the inset in (D) for lattice fringe (scale bar 50 nm).

Due to the low activity of Pd/NH2-SiO2, the apparent TOF values (TOFRu) were calculated on 

the basis of the Ru contents. As shown in Figure 2B, the TOF increased sharply as Ru contents 

decreased. RuPd5/NH2-SiO2 with TOF of 172 h-1 and up to 99% selectivity to C-O bond cleavage 
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7

is the most active and selective solid catalyst ever reported for catalytic cleavage of DPE (Table 

S4). The catalytic cleavage of DPE was also performed at 80 C (Figure 2B and Table S5). At 

this temperature, Pd/NH2-SiO2 showed almost no activity, while RuPdx/NH2-SiO2 could 

efficiently catalyze the reaction with RuPd5/NH2-SiO2, suggesting that Ru was the active site for 

DPE cleavage. The activity and selectivity of RuPdx/NH2-SiO2 at 80 C followed the same 

sequence as those at 110 C, further confirming the enhancement effect of RuPd alloy. 
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Figure 2. (A) Variation of the DPE conversion and monomers selectivity obtained from 

RuMx/NH2-SiO2 (M = Pd or Au) catalysts as a function of Ru contents (mol%). (B) The relation 

of TOF with M/Ru (M = Pd or Au) ratio in aqueous H2 assisted C-O bond cleavage of DPE over 

RuMx/NH2-SiO2. (C) In situ FT-IR spectra of CO adsorption on (a) Ru/NH2-SiO2, (b) 

RuPd0.33/NH2-SiO2, (c) RuPd1/NH2-SiO2, (d) RuPd5/NH2-SiO2 and (e) Pd/NH2-SiO2. (D) H2-D2 

Page 7 of 31

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

exchange reactions results on Pd/NH2-SiO2, RuPd5/NH2-SiO2, Ru/NH2-SiO2, RuAu5/NH2-SiO2 

and Au/NH2-SiO2.

Generally, the alloy effects may alter the geometric and electronic properties of the metal 

NPs.[19] Firstly, the binding energy of Pd 3d and Ru 3p are measured using the X-ray 

photoelectron spectroscopy (XPS) technique (Figure S9, Table S7). In comparison with 

Ru/NH2-SiO2, the Ru 3p binding energies of RuPdx/NH2-SiO2 shifted to lower energy. The blue 

shift of Pd 3d binding energies of RuPdx/NH2-SiO2 (x = 0.33, 1) was observed in comparison 

with Pd/NH2-SiO2. The Ru0 content increased gradually along with the Pd content and reached a 

plateau at RuPd5 and the Pd0 concentration for RuPd0.33 and RuPd1 is much lower, indicating Pd 

greatly promoted the reduction of Run+.[20] The XPS data indicated the electron transfer from Pd 

to Ru and the electronic state of RuPdx NPs differs from those of monometallic NPs because of 

the strong interaction of Ru and Pd.[20a,21] 

The surface structure and composition of RuPdx/NH2-SiO2 which may affect their catalytic 

performance[22] were investigated using in situ FT-IR of CO adsorption considering that the C-O 

stretching frequency is sensitive to the change on the metal surface where CO is bonded (Figure 

2C, Figure S11). For Pd/NH2-SiO2, the bridge-bonded CO on Pd surface could be observed at 

1904 cm-1 and the linear-bonded CO occurred at 2052 cm-1. The CO adsorption on Ru/NH2-SiO2 

is quite complicated with the bands at 2165, 2117 and 2052 cm-1 assigned to CO bonded on Run+, 

the band at 1990 cm-1 derived from linear CO on Ru0 surrounded by Run+ and the weak and 

broad band at 1815 cm-1 for the bridge bonded CO on Ru0.[23] With Pd content increasing, the 

bands assigned to CO adsorbed on Ru NPs become less discernible accompanied by the 

enhancement in the intensity of the CO bands adsorbed on Pd NPs. The bands assigned to CO 

adsorbed on Ru surface disappeared completely for RuPdx/NH2-SiO2 (x ≥ 5). This is possibly 
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due to the dilution and isolation of Ru by Pd with x ≥ 5. On the basis of the d-band center 

theory,[24] the change in the electronic[25] and geometric[26] structure of RuPdx may modulate the 

stength of the metal-adsorbate interaction and consquently tailoring their catalytic functions.

The almost linear increase in apparent TOF of RuPdx/NH2-SiO2 with x increasing indicates 

that the isolated Ru sites are more active for DPE cleavage. The dilution of Ru by Pd is an 

ensemble effect of alloying, which is often observed in the AuPd bimetallic system.[13b] On the 

basis of the XPS results, the Pd also modifies the electronic properties of Ru. To verify the role 

of Pd in RuPdx/NH2-SiO2, control samples, RuAux/NH2-SiO2 (metal loading content of 4 wt% 

and x denotes the Au/Ru molar ratio, the particle size of ~2.2 nm, Figure S6), were prepared. 

The EDS results show that the existence of Ru and Au on NH2-SiO2 (Figure S7). Based on the 

EDS line scanning, the RuAu alloy may have a Ru surface enriched structure (Figure S8B).[27]

 XPS data showed that the binding energies of Ru 3p and Au 4f of RuAux/NH2-SiO2 are 

almost similar to corresponding Ru/NH2-SiO2 and Au/NH2-SiO2, showing the weak interactions 

between Ru and Au (Table S8).[28] The in situ FT-IR spectra of CO adsorbed on RuAux/NH2-

SiO2 resemble that of Ru/NH2-SiO2 due to the weak adsorption of CO on Au NPs (Figure S11). 

The red shift in bands assigned to CO adsorbed on Ru0 surrounded by Run+ was observed for 

RuAux/NH2-SiO2 (x = 5, 9 and 20), possibly due to the weak interaction of dipole-dipole 

coupling between CO molecules on metal surface.[29] The intensity of CO adsorption band 

decreases as Ru content decreasing and the band disappears almost completely for RuAu5/NH2-

SiO2, suggesting that the effective isolation of Ru by Au was achieved with x  5. The above 

results show that the alloying Ru with Au only induced the site isolation of Ru.[30]

No activity was observed for Au/NH2-SiO2 in the cleavage of DPE and RuAux/NH2-SiO2 

could efficiently catalyze this reaction with monomers selectivity varying in the range of 95% to 
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10

93% (Figure 2A). The activity of RuAux/NH2-SiO2 was much lower than that of RuPdx/NH2-

SiO2. In the contrary to RuPdx/NH2-SiO2, the conversion decreases gradually as the Ru contents 

decreases though the TOF of RuAux/NH2-SiO2 (x = 5, 9 and 20) increased with the Ru contents 

decreasing. This suggests that the site isolation of Ru is not the main reason for the enhanced 

catalytic performance of RuPdx/NH2-SiO2.

The activation of H2 on metal surfaces was tested using H2-D2 exchange measurement 

considering that the H2 activation/dissociation is one of the important element steps in 

hydrogenation/hydrogenolysis reactions[31] (Figure 2D). The normalized activity followed the 

order of Pd/NH2-SiO2 (100) > RuPd5/NH2-SiO2 (65) > Ru/NH2-SiO2 (2.7) > RuAu5/NH2-SiO2 

(0.03) > Au/NH2-SiO2 (~0). The activity of RuPd5/NH2-SiO2 is 24 times that of Ru/NH2-SiO2. 

The significantly enhanced H2 activation ability of RuPd5/NH2-SiO2 may be due to the electronic 

effect of RuPd alloy and superior hydrogen dissociation capabilities of Pd.[15c, 32] On the contrary, 

RuAu5/NH2-SiO2 exhibit inferior catalytic performance due to the low activation ability of the 

Au NPs.[33] On the basis of kinetic studies, a 0.64-order dependence of H2 and the large KIE 

effect (KH/KD = 3.1) was observed for RuPd5/NH2-SiO2 (Figure S12), suggesting the 

dissociation adsorption of H2 may be involved in the rate-limiting step in the hydrogenation and 

hydrogenolysis reactions.[11a,34] In correlation of the H2 activation ability and catalytic 

performance, it could be seen that RuPd5/NH2-SiO2 with moderate H2 activation ability showed 

the highest activity and selectivity. Thus, the high catalytic performance of RuPd5/NH2-SiO2 

could be possibility attributed to the combined effect of optimized H2 activation ability and site 

isolation of Ru. 

With RuPd5/NH2-SiO2 as a model catalyst, the product selectivity as a function of reaction 

time was investigated (Table 1). The DPE conversion increased steadily with reaction time and 

Page 10 of 31

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11

approached 99% in 60 min. Benzene, cyclohexanol and cyclohexanone together with a small 

amount of phenol were detected in initial 3 min. No phenol was detected after 15 min because of 

its high hydrogenation activity on RuPd5/NH2-SiO2. The selectivity to cyclohexane and 

cyclohexanol increased while the selectivity to benzene and cyclohexanone decreased as the 

reaction time was prolonged. This indicated that benzene, phenol and cyclohexanone were 

hydrogenated into saturated products, cyclohexane and cyclohexanol. Only 1% CHPE was 

detected throughout the whole reaction process, suggesting that CHPE is not the intermediate for 

C-O bond cleavage of DPE. This was further confirmed by poor activity and selectivity of 

RuPd5/NH2-SiO2 in the cleavage of CHPE (26% Conv. with 31% Sel.). Furthermore, DCHE 

cannot be converted on RuPd5/NH2-SiO2 under current reaction conditions. This could exclude 

the reaction pathway via hydrogenolysis/hydrolysis of DCHE.[5c,11a] It can be concluded that the 

C-O bond of DPE is directly cleaved on RuPd5/NH2-SiO2.

Table 1. The C-O bond cleavage of DPE over RuPd5/NH2-SiO2 as a function of reaction time.a

Product Sel. (%) bT
(min) CH Bz CHOH CHO PhOH CHPE DCHE

Conv. (%) Sel.  (%) c

3 4 40 29 20 7 ~ 0 0 15 > 99

15 3 38 31 24 3 ~1 0 71 99

30 14 20 49 15 0 1 0 89 99

45 24 4 69 2 0 1 0 97 99

60 29 0 71 0 0 1 0 99 99
aReaction conditions: 110 oC, 0.22 mmol DPE, 0.022 mmol metals, 3 mL H2O, 10 bar H2. b CH 

(cyclohexane), Bz (benzene), CHOH (cyclohexanol), CHO (cyclohexanone), PhOH (phenol), 
DCHE (dicyclohexyl ether), CHPE ((cyclohexyloxy)benzene). cMonomers selectivity.

The hydrogenolysis of DPE is the main reaction pathway for RuPd5/NH2-SiO2 and Ru/NH2-

SiO2 at the initial time (88% vs. 68%, similar conversion of ~15%) (Figure 3A-B). With the 
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12

reaction time prolonging, the selectivity to hydrogenolysis products decreased accompanied with 

the selectivity to hydrolysis products increasing for the two catalysts. Finally, the products ratio 

of hydrogenolysis to hydrolysis on RuPd5/NH2-SiO2 and Ru/NH2-SiO2 reached to 3:2 and 2.4:2, 

respectively. The higher hydrogenolysis ratio on RuPd5/NH2-SiO2 may be related to its higher H2 

dissociation ability and lower aromatic ring hydrogenation ability (Table S11). No conversion 

was obtained on RuPd5/NH2-SiO2 in the N2 atmosphere, showing the important role of H2 in the 

catalysis. Only hydrogenolysis (65%) and hydrogenation (35%) products was obtained on 

RuPd5/NH2-SiO2 using isopropanol as solvent (Table S6). The hydrogenolysis selectivity in 

water and in isopropanol on RuPd5/NH2-SiO2 was similar, indicating that the water does not 

involve in the hydorgenolysis reaction pathway. 
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Figure 3. Reaction profiles of C-O bond cleavage of DPE with the reaction time catalyzed by (A) 

RuPd5/NH2-SiO2 and (B) Ru/NH2-SiO2. Reaction conditions: 110 oC, 0.22 mmol DPE, 0.022 

mmol metals, 3 mL H2O, 10 bar H2. Selctivity to hydrogenolysis = 2 ╳ (CH + Bz), selectivity to 
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hydrolysis = (PhOH + CHO + CHOH) – (CH + Bz). Abbreviation see Table 1. (C) Proposed 

reaction pathways for the DPE cleavage over RuPd5/NH2-SiO2 in water.

Combining the above results, the possible reaction pathway on RuPd5/NH2-SiO2 can be 

proposed as follows (Figure 3C). Firstly, H2 is activated on Pd sites to generate active H species. 

Meanwhile, DPE is chemisorbed on Ru active sites via strong π interactions between one 

aromatic ring and d-states of the metal (possibly the most stable adsorption mode).[15b,35] 

Subsequently, the active H species spilled over to Ru sites to attack C-O bond,[36] consequently  

resulting in the direct C-O bond scission. The produced monomers transferred to metal surface to 

be hydrogenated for the formation saturated cyclohexane and cyclohexanol. 

The organosolv lignin extracted from beech sawdust was used to investigate the catalytic 

performance of RuPd alloy. The reaction was performed under H2 atmosphere (30 bar) at 150 oC 

for 10 h. 2D 13C-1H heteronuclear single quantum correlation (HSQC) NMR experiments were 

conducted to monitor the cleavage of the characteristic interconnecting bonds within lignin 

(Figure S13). After reaction, the signals which can be ascribed to the phenylcoumaran structures 

B (Bα, Bβ and Bγ) and the resinol structures C (Cα, Cβ and Cγ) significantly reduced, showing 

RuPd5/NH2-SiO2 could be able to degrade the lignin at mild conditions. However, most of the β-

O-4 linkages A- and A’-signals still present, suggesting the β-O-4 bonds cannot be easily cleaved 

under this conditions.

The recycle stability of RuPd5/NH2-SiO2 was tested in the cleavage of DPE (Figure S14). The 

result revealed that RuPd5/NH2-SiO2 could be stably reusable for at least 5 times. After 5 cycles, 

RuPd5/NH2-SiO2 could still afforded 94% conversion. TEM results shows that no aggregation of 

metal NPs could be observed. Furthermore, no traces of leached Ru or Pd species were detected 

in the reaction filtrate, demonstrating its good recyclability stability under current conditions.
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3. CONCLUSION

In summary, the RuPd bimetallic NPs (2.1 nm) uniformly dispersed on amine-rich silica 

hollow nanospheres (NH2-SiO2) could efficiently catalyze the H2 assisted C-O bond cleavage of 

diphenyl ether in H2O even at temperature as low as 80 oC. The obvious volcano relationship 

between conversion and Ru content suggested the synergistic effect of Ru and Pd. The TOF of 

RuPd NPs increased remarkably as the Ru contents decreased, indicating that the isolated Ru 

sites were more active than Ru crystallites. The studies show that the unique catalytic 

performance of RuPd bimetallic NPs was strongly related with the optimized H2 activation 

ability and the site isolation of Ru resulting from the alloying effect. The excellent catalytic 

performance and good recyclability make the RuPd5/SiO2-NH2 catalyst attractive for both 

fundamental research and practical applications.

4. EXPERIMENT SECTION

Chemicals and agents. All materials were of analytical grade and used as received without 

any further purication. Diphenyl ether was purchased from J&K Chemicals. Phenol and decane 

were obtained from TCI Chemicals (Shanghai). Fluorocarbon surfactant (FC4) was bought from 

YickVic Chemicals (Hong Kong). Cyclohexyloxybenzene were purchered from Fluorochem 

(UK). Oxydicyclohexane were synthesized according to the previous method.[5c] (3-

Aminepropyl)triethoxysilane (APTES), tetraethoxysilane (TEOS), cetyltrimethylammonium 

bromide (CTAB) and other reagents were purchased from Shanghai Chemical Reagent, Inc. of 

the Chinese Medicine Group. 

Preparation of amine-rich mesoporous silica hollow nanospheres (NH2-SiO2). Step1. 

Tetraethoxysilane (TEOS) (0.25 mL) was added into 23 mL of aqueous solution containing 0.05 

g of CTAB and 0.18 mL of NaOH solution (2.0 M) under slow stirring. Then, 0.2 mL of ethyl 
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acetate was successively added to the solution, and the synthetic medium was kept at 70 °C for 

30 min without stirring. Step 2. 60 mL of aqueous solution (40 mL) with ethanol (20 mL), 

CTAB (0.15 g), and NH3·H2O (0.5 mL, 25 wt%) was added to the above mixture. After cooling 

down to 38 °C, the reaction mixture was kept at this temperature with stirring for 30 min, then 

TEOS (0.25 mL) was added under stirring. The mixture was stirred for 1 h followed by the 

addition of 1.5 mL of aqueous solution with FC4 (0.02 g), CTAB (0.04 g), and NH3·H2O (0.1 

mL, 25 wt%). Step 3. Then, 1.33 mL of ethanol solution with APTES (0.33 mL) was added 

under vigorous stirring. After stirring for 1 h, the reaction mixture was stirred at 80 °C for 10 h 

with the stopper open to evaporate the solvent. The powder product was collected by filtration 

and dried at room temperature. To remove the surfactant, the as-synthesized materials (1 g) was 

dispersed in 120 mL of ethanol (95%) with ammonium nitrate (80 mg) and sirred at 60 °C for 20 

min. This process was repeated for three times.

Preparation of RuPdx/NH2-SiO2 via the impregnation method. Typically, 400 mg of NH2-

SiO2 was dispersed in 2 mL of deionized water in a centrifuge tube under ultrasound. Then 

desired amount of Na2PdCl4 and RuCl3 aqueous solution (0.01 g mL-1) was added into the tube 

successively. After ultrasound treatment for 10 min, a freshly prepared NaBH4 aqueous solution 

(7.5 mg mL-1) was added dropwise. The brownish red colour transformed into dark gray. After 

ultrasound treatment for another 30 min, the mixture was filtered and the black powder product 

was washed with deionized water and EtOH for several times. After drying in an oven at 60 oC 

overnight, RuPdx/NH2-SiO2 was obtained where x refers to molar ratio of Pd per Ru. 

RuAux/NH2-SiO2 bimetallic NPs were prepared in a similar method with RuPd5/NH2-SiO2 

except that HAuCl4 was used.
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The reaction of diphenyl ether. In a typical experiment, a desired amount of solid catalyst 

(0.022 mmol of metals) was added in an ampoule tube, followed by the addition of diphenyl 

ether (0.22 mmol) (S/C=10) and 3 mL of water. The ampoule tube was loaded into a stainless 

steel autoclave (300 mL) with a thermocouple probed detector. After purging with hydrogen for 

six times, the final pressure was adjusted to 10 bar and the reactor was heated to 110 oC with 

vigorous stirring. After reaction, the reactor was quenched to ambient temperature using cooling 

water, and the organic products were extracted using ethyl acetate (5 mL). The water phase and 

oil phase were respectively analyzed by an Agilent 7890B GC equipped with an Agilent J&W 

GC HP-INNOWax capillary column (30 m × 0.32 mm × 0.5 μm). Conversion and selectivity 

were determined using n-decane and EtOH as the internal standard respectively for oil and water 

phase and defined as eqs 1-5. The monomers refer to benzene, cyclohexane, phenol, 

cyclohexanone and cyclohexanol. The dimers refer to (cyclohexyloxy)benzene and dicyclohexyl 

ether. The carbon balance for all the reactions was > 90%.

100*
)ether/mmoldiphenylofamountinitial(The*12

)ldimers/mmoofamountThe(*12mmol) monomers/ofamount(The*6
(%)Conversion




100*
)ldimers/mmoofamountThe(*12mmol) monomers/ofamount(The*6

e/mmol)cyclohexanandbenzeneofamount(The*6
*2(%)ysishydrogenoltoySelectivit




100*
)ldimers/mmoofamountThe(*12mmol) monomers/ofamount(The*6

)e/mmolcyclohexanandbenzeneofamountThe(*6)/mmolcyclohexolandonecyclohexanphenol,ofamountThe(*6

(%)hydrolysistoySelectivit






100*
)ldimers/mmoofamountThe(*12mmol) monomers/ofamount(The*6

)ldimers/mmoofamountThe(*12
(%)ionhydrogenattoySelectivit




(1)

(2)

(3)

(4)

/%)hydrolysistoty(Selectiviysis/%)hydrogenoltoySelectivit((%)bondO-CthetoySelectivit  (5)

Characterization

Transmission electron microscopy (TEM) was performed on a HITACHI 7700 at an 

acceleration voltage of 100 kV. Scanning transmission electron microscopy (STEM) was 

undertaken on a HITACHI S-5500 scanning electron microscope operating at an acceleration 
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voltage of 1-20 kV. The EDS mapping were obtained using a JEOL F200. 2D 13C-1H 

heteronuclear single quantum correlation (HSQC) NMR spectra were recorded at 25 oC using a 

Bruker Avance III HD 700 MHz spectrometer. 60 mg sample was dispersed in 0.5 mL of 

DMSO-d6. The central DMSO solvent peak was used as an internal chemical shift reference 

point (δC/δH 39.52/2.49).[37] The N2 adsorption-desorption experiments were performed at 77 K 

using a Micromeritrics ASAP 2020. Samples were degassed at 120 oC for 6 hours prior to the 

measurements. FT-IR spectra were collected with a Nicolet Nexus 470 IR spectrometer (KBr 

pellets were prepared) in the range of 400-4000 cm-1. The thermogravimetric analysis (TGA) 

was performed using a NETZSCH STA 449F3 analyzer from 30 oC to 900 oC at a heating rate of 

10 oC ∙min-1 under air atmosphere. The metal content was determined by PLASAMSPEC-II 

inductively coupled plasma atomic emission spectrometry (ICP-AES). X-ray photoelectron 

spectroscopy (XPS) was recorded on VG ESCALAB MK2 apparatus using Al Kα (hλ = 1486.6 

eV) as the excitation light source. The peaks in the spectra were fitted by using the shareware 

program XPS-PEAK with Gaussian-Lorentzian peak shapes and a Shirley background. The 

binding energies are corrected with reference to the C 1s line at 284.6 eV.

In situ FT-IR of CO adsorption were collected on a Bruker EQUINOX 55 infrared 

spectrometer with a DTGS detector. Prior to CO chemisorption, as-prepared samples were 

pretreated at 200 oC under flowing H2 atmosphere (20 mL min-1) for 1 h, followed by evacuation 

at room temperature for 1 h, then cooled down to room temperature. After pretreatment, a 

background spectrum was collected from samples and subtracted automatically from subsequent 

spectra. CO adsorption experiments were carried out sequentially on a single sample. Gas-phase 

CO spectra were collected at the same pressure and subtracted from the corresponding sample 

spectra.[15d]
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H2-D2 exchange reactions were carried out in a flow quartz reactor at 22 oC.[38] The formation 

rate of HD was measured by mass signal intensity (ion current). Before the test, the catalysts 

were heated in H2 (10 mL min-1) at 200 oC for 20 min. After the sample was cooled at room 

temperature, D2 (10 mL min-1) mixed with H2 was passed through the sample. The gas hourly 

space velocity (GHSV) is 1.16×108 mL·h-1·gmetal
-1. Under these conditions, the H2-D2 exchange 

conversions were always kept below 15% for calculation of turnover frequency (TOF).[38b] 

Products (HD, H2, and D2) were analyzed with an online mass spectrometer (GAM200, 

InProcess Instruments). The mass/charge ratio (m/z) values used are 2 for H2, 4 for D2, and 3 for 

HD. The background HD exchanges from the corresponding support were deducted from the 

results.

Characterization of NH2-SiO2.

The results of TEM and HRSEM characterizations show that NH2-SiO2 is composed of mono-

dispersed nanospheres with particle size in the range of 100~200 nm and has a rough surface 

formed with connected nanoparticles with size of 10-25 nm (Figure S1). A broken nanosphere 

chosen intentionally clearly confirmed the hollow nanostructures (Figure S1B). NH2-SiO2 has 

the BET surface area of 156 m2 g-1 with pore size distribution centered at 15 nm derived mainly 

from inter void space of the connected nanoparticles (Table S1). The solid-state 13C CP/MAS 

NMR spectrum displays the chemical shifts at 8.8 ppm, 20.8 ppm and 40.9 ppm, which could be 

assigned to C1, C2 and C3 of -C1H2C2H2C3H2NH2, suggesting the successful incorporation of 

amine groups (Figure S2A). The solid-state 29Si NMR spectrum exhibits both T sites (-69.9 ppm 

for T3) and Q sites (-101.7 ppm for Q3 and -113.8 ppm for Q4) with T/(Q+T) ratio of about 22.4 

%, showing the integration of APTES in NH2-SiO2 hollow nanospheres (Figure S2B). FT-IR 

spectrum of NH2-SiO2 clearly show the vibration peaks assigned to propyl groups at 2937 cm-1 
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(υC-H ) and 1385 cm-1 (δC-H) and amine group at 3441 cm-1 (υN-H) and 1558 cm-1 (δN-H) (Figure 

S3A). On the basis of the TG analysis (Figure S3B), the weight loss of 22.9 wt% in the range of 

250 to 750 oC could be assigned to the content of amine groups, which corresponds to amine 

amount of 3.95 mmol g-1. The C, H, N elemental analysis affords N content of 5.4 wt%. The 

calculated amine amount is 3.85 mmol g-1, which is consistent with the TG analysis result. The 

above results confirm the formation of porous silica hollow nanospheres rich in amine group via 

one-pot synthesis method.
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