Sequential Copper-Catalyzed Rearrangement–Allylic Substitution of Bicyclic Hydrazines with Grignard Reagents

Stefano Crotti,^a Ferruccio Bertolini,^a Franco Macchia,^a and Mauro Pineschi^{a,*}

^a Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy Fax: (+39)-(0)50-221-9660; e-mail: pineschi@farm.unipi.it

Received: January 19, 2009; Published online: April 6, 2009

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.200900037.

Abstract: The problem of the synthesis of *trans*-1,4disubstituted hydrazino- and aminocyclopentenes has been resolved by a sequential copper-catalyzed rearrangement–allylic alkylation of 2,3-diazabicyclo-[2.2.1]heptenes. The *cis*-fused 5,5-membered allylic carbazate which is formed *in situ* by a novel copper(II) triflate [Cu(OTf)₂]/(\pm)-BINAP-catalyzed rearrangement, can be alkylated with a broad spectrum of Grignard reagents with a predominant S_N2'regioselectivity. The N-Boc protecting group proved to be optimal as regards yields, reaction times and regioselectivities.

Keywords: allylic alkylation; copper; Grignard reagents; rearrangement; sequential reactions

Substituted aminocyclopentenes hold a tremendous amount of synthetic potential as intermediates for the preparation of a variety of biologically interesting molecules.^[1] For example, 4-amino-2-cyclopentene-1methanol is a widely used chiral building block for the preparation of carbocyclic adenosine derivatives which possess antiviral properties.^[2] Installation of a carbon-based nucleophile onto a pre-existing cyclopentene represents a viable strategy to introduce substitution on this ring. For example, the allylic displacement of 4-cyclopentene-1,3-diol monoacetate with aryl- and alkenyl-Grignard reagents followed by substitution of the hydroxy group with $(PhO)_2P(=O)N_3$ gave cis-1,4-azidoarylcyclopentenes [Eq. (1), Figure 1].^[3a] cis-1,4-Disubstituted bis-Cbz-protected hydrazinocyclopentenes can be obtained by a diastereoselective palladium-catalyzed ring opening of Cbzprotected bicyclic hydrazine (1a) with soft nucleo-philes [Eq. (2), Figure 1).^[4] Quite recently, several methods for the ring opening of bicyclic hydrazines with carbon nucleophiles were developed, but all re-

Figure 1. Possible approach to 1,4-substituted azido- or hydrazinocyclopentenes.

ported methods gave invariably 1,2-disubstituted hydrazinocyclopentenes.^[5] It should be noted that Grignard reagents, which are the most readily available organometallic reagents, were never considered.

Furthermore, it is known that the direct nucleophilic displacement at the bridgehead position of [2.2.1]bicyclic systems, which can be a reasonable pathway to these compounds, is reported to be extremely difficult [Eq. (3), Figure 1].^[6]

We report here a novel regioselective synthesis of *trans*-1,4-disubstituted hydrazino- and aminocyclopentenes by a sequential copper-catalyzed rearrangement–allylic alkylation of 2,3-diazabicyclo-[2.2.1]heptenes.

The thermal or Lewis acid-catalyzed rearrangement of bicyclic [2.2.1] diacylhydrazines, such as **1b**, to give oxadiazines has been extensively studied and explained on the basis of a [3,3]-sigmatropic (hetero-Cope) rearrangement [Eq. (4), Scheme 1].^[7] More recently, the corresponding protic or Lewis acid-catalyzed (LA) rearrangement of carbobenzyloxy-protected bicyclic [2.2.1] hydrazine **1a** was explained by means of a transient allylic cation to give 5,6-bicyclic

Scheme 1. Modes of rearrangement of differently protected [2.2.1] bicyclic hydrazines.

intermediate **4a** [Eq. (5), Scheme 1].^[4,5b] As compound **4a** has an allylic leaving group, we considered this compound as a possible candidate for an allylic alkylation with Grignard reagents. However, in our hands, when bicyclic hydrazine **1a** was allowed to react with H_2SO_4 in CF₃CH₂OH in accordance with a previously reported procedure,^[5b] a remarkably different reaction outcome was obtained. To our surprise, the main product was not the expected 5,6-bicyclic carbazate **4a** but the 5,5-analogue **3a** (65% isolated yield).^[8]

In order to improve the yields of allylic carbazate of type 3, the rearrangement of differently carbamoyl protected bicyclic hydrazines 1a, 1c, 1d was investigated under the catalysis of different Lewis acids (Table 1). Using catalytic amounts (3.0 mol%) of $Cu(OTf)_2$ we soon realized that the *N*-tert-butoxycarbonyl (Boc) protected hydrazine 1c was much more prone to the rearrangement reaction than 1a (entry 1), and 1d (entry 2), and afforded cleanly the corresponding carbazate 3c as a white solid (entry 3). Copper(I) and copper(II) salts with a coordinating ligand (entries 4-6), proved to be ineffective for this rearrangement. On the other hand, also $Sc(OTf)_3$ and FeCl₃ promoted this kind of transformation in high yields (entries 7 and 8), whereas $Zn(OTf)_2$ gave a very low conversion (entry 9). The effect of adding phosphorus-based ligands to the reaction catalyzed by $Cu(OTf)_2$ was also examined. Very interestingly we found that the reaction performed in the presence of (\pm) -BINAP (6 mol%) was particularly efficient and complete conversion was observed in 10 min at room temperature (entry 10).^[9] A similar result can be obtained by the use of non-coordinating solvents such as CH_2Cl_2 or toluene (data not shown in Table 1).

The detection by MS of dimeric structures,^[5b] and the polymerization of THF suggested a stepwise mechanism with the involvement of open cationic species at least for N-Cbz protected compound **1a**.^[8b] However, for the copper-catalyzed reaction of the N-Boc derivative 1c, the rather small solvent effect together with the failure of detection of cationic intermediates, point to a concerted cyclic mechanism which can formally be interpreted as a [3,4]-sigmatropic rearrangement. In this scenario, the azaphilic

Table 1. Screening of Lewis acids (LA) for the rearrangement of [2.2.1] bicyclic hydrazines.^[a]

N-PG	LA (3 mol%)	O NHPG
PG	THF, 16 h r.t.	0,,,
1a, PG = Cbz 1c, PG = Boc 1d, PG = COOEt		3a , PG = Cbz 3c , PG = Boc

Entry	Substrate	Lewis Acid	Conversion [%]	Yield [%] ^[b]
1 ^[c]	1a	Cu(OTf) ₂	95	58 (3a)
2 ^[c]	1d	$Cu(OTf)_2$	complex n	nixture
3	1c	$Cu(OTf)_2$	100	97 (3c)
4	1c	CuCl	< 5	N.d.
5	1c	$Cu(CH_3CN)BF_4$	< 10	N.d.
6	1c	CuCl ₂	< 10	N.d.
7	1c	$Sc(OTf)_3$	100	82 (3c)
8 ^[d]	1c	FeCl ₃	95	80 (3c)
9	1c	$Zn(OTf)_2$	< 10	N.d.
10 ^[e]	1c	$Cu(OTf)_2$	100	97 (3c)

^[a] Conditions: **1a** or **1c**, Lewis acid (3 mol%) in THF at room temperature for 16 h, unless stated otherwise.

- ^[b] Isolated yields after chromatographic purification on silica gel.
- [c] The reaction has been carried out in CH₂Cl₂ because in THF extensive polymerization of the solvent was observed.
- ^[d] 8 mol% of this salt was used.
- ^[e] The reaction was carried out in the presence of 6 mol% of BINAP for 10 min at room temperature.

Figure 2. Plausible mechanism for the formation of 5,5-bicyclic carbazate 3c.

Cu(I)-phosphine catalyst might activate the nitrogen of the hydrazine promoting the rearrangement with the subsequent formation of volatile 2-methylpropene, as shown in Figure 2.^[10]

Copper-catalyzed allylic alkylation with organometallic reagents represents a widely used synthetic strategy to introduce a carbon substituent on a molecule.^[11] To our delight, after ensuring by TLC analysis that the Cu(OTf)₂-BINAP-catalyzed rearrangement had taken place (after ca. 10 min for 1c), the subsequent one-pot addition of MeMgBr and EtMgBr to 1c gave the corresponding monoprotected 1,4-adducts 5a and 5b with good S_N2'-regioselectivity and complete anti-stereoselectivity (entries 1 and 2, Table 2).^[12] In order to verify the scope of the reaction, we next examined the addition of other Grignard reagents to 1c. Interestingly, the use of allylmagnesium bromide, which is rarely used in coppercatalyzed allylic alkylations, gave the corresponding allylated cyclopentene 5c very cleanly (entry 3). Also the use of benzylmagnesium bromide was satisfactory (entry 4). More sterically demanding reagents, such as i-PrMgCl, and the synthetic equivalent of the "CH₂OH" anion [i.e., ClMgCH₂SiMe₂(*i*-PrO)], gave equally good yields of the corresponding adducts (entries 5 and 6).

Addition of aromatic Grignard reagents proceeded in good yields (entries 7 and 8), and also a heteroaromatic Grignard reagent was successfully employed, albeit with a not complete conversion of 3c (entry 9). On the other hand, the addition of vinylmagnesium bromide was inefficient and delivered a complex mixture of products with a modest conversion (*ca.* 30% after 1 h at 0°C, entry 10). It is worth mentioning that all compounds of type **5** were easily isolated in the pure state by chromatographic purification on **Table 2.** Copper-catalyzed one-pot rearrangement–alkylation of **1c** with Grignard reagents.^[a]

Entry	Grignard	Yield [%] ^[b]	5 /6 ^[c]
1	MeMgBr	75 (5 a)	87/13
2	EtMgBr	70 (5b)	86/14
3	allylMgBr	80 (5c)	83/17
4	PhCH ₂ MgBr	75 (5d)	81/19
5	(<i>i</i> -PrO)Me ₂ SiMeMgCl	75 (5e)	82/18
6	<i>i</i> -PrMgCl	80 (5f)	86/14
7	PhMgBr	72 (5g)	83/17
8	EtO ₂ C	85 (5h)	92/8
9	MgBr	58 (5i)	85/15
10	vinvlMgBr	complex mixture	

[a] Conditions: 1c (1 equiv.), Cu(OTf)₂ (3 mol%), rac-BINAP (6 mol%) in THF at room temperature for 15 min, then RMgBr (3.0 equiv.) 0°C for 1 h.

^[b] Isolated yields of compound of type **5** after chromatographic purification on silica gel.

^[c] Determined by ¹H NMR of the crude reaction mixture (see Supporting Information for details).

silica gel, whereas regioisomeric adducts of type **6**, could not be obtained in a pure form. The *trans*-stereochemistry of adducts of type **5** was demonstrated by ¹H NMR analysis and comparison with related 1,4-substitued cyclopentene derivatives.^[3,6] Evidently, an allylic carbazate of this kind is not able to direct the trajectory of the incoming organocopper nucleophile by coordination, and the displacement follows the canonical *anti*-stereoselective pathway.^[14] All ring-opened adducts contained only one protecting group on the nitrogen distal to the cyclopentene ring, indicating that the decarboxylation of the 3-carbo-*tert*-butyloxy-carbazic acid (**A**), which is formed *in situ* after the allylic displacement of the carbazate, occurs spontaneously (Scheme 2).

Scheme 2. Plausible mechanism for the formation of monoprotected adducts.

Adv. Synth. Catal. 2009, 351, 869-873

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

It is known that the hydrazine moiety can be converted by standard methods into valuable products, such as pyrazole derivatives,^[15] 1,2,4-triazolo derivatives,^[16] or into the corresponding amine by several reduction methods.^[5i,17] In conclusion, replacement of the amide by urethane protecting groups, in particular with PG = Boc, inhibited the classical [3,3]-sigmatropic Lewis acid-catalyzed rearrangement of 2,3-diaza-[2.2.1]heptenes and gave a *cis*-fused 5,5-bicyclic allylic carbazate framework instead of the previously reported 5,6-bicyclic framework. This Cu(OTf)₂/(±)-BINAP-catalyzed rearrangement proved to be pivotal to obtain *trans*-1,4-disubstituted monoprotected hydrazinocyclopentenes by means of the subsequent one-pot allylic alkylation with Grignard reagents.

As an ample variety of Grignard reagents can be used, this very simple reaction protocol represents a useful and practical synthetic tool and nicely complements the known methods to access nitrogen-containing cyclopentenes.

Experimental Section

Typical Procedure: 1-(*tert*-Butoxycarbonyl)-2-{(1*R**, 4*R**)-4-[4-(ethoxycarbonyl)phenyl]cyclopent-2-en-1-yl)}hydrazine (5h)

Under argon atmosphere, a mixture of Cu(OTf)₂ (2.65 mg, 0.006 mmol) and racemic BINAP (7.50 mg, 0.012 mmol) in anhydrous THF (1.0 mL) was stirred for 10 min at room temperature. Cyclic hydrazine 1c (59.2 mg, 0.2 mmol) in anhydrous THF (1.0 mL) was added, and the mixture was stirred at room temperature for ca. 15 min (TLC detection). The mixture was cooled at 0°C, and then freshly prepared ArMgBr (ca. 1.0M; 3 equiv, 0.6 mmol) was added. The mixture was allowed to react for 1 hour at 0°C (100% conversion). The title compound was isolated by column chromatography eluting with hexanes/AcOEt (8:2), as an oil; yield: 59 mg (85%). ¹H NMR (250 MHz, CDCl₃): $\delta = 1.31 - 1.40$ (m, 3H), 1.48 (s, 9H), 1.87 (ddd, $J_1 = 5.0$ Hz, $J_2 = 7.5$ Hz, $J_3 =$ 12.5 Hz, 1 H), 2.26 (ddd, $J_1 = 3.3$ Hz, $J_2 = 11.5$ Hz, $J_3 =$ 11.7 Hz, 1H), 4.02-4.10 (m, 2H), 4.30-4.39 (m, 2H), 5.89-5.96 (m, 2H), 6.09-6.20 (br s, 1H), 7.12-7.19 (m, 2H); 7.90-7.97 (m, 2H); ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 14.3$, 28.3, 39.1, 50.2, 60.8, 66.9, 80.8, 127.1, 128.5, 124.8, 132.3, 138.1, 150.6, 156.8 (w), 166.5; anal. calcd. for C₁₉H₂₆N₂O₄: C 65.87%, H 7.56%; found: C 65.89%, H 7.48%.

1-(*tert*-Butoxycarbonyl)-2-[(1*R**,4*R**)-4-methylcyclopent-2-en-1-yl]hydrazine (5a) (Table 2, entry 1)

Using the typical procedure, Cu(OTf)₂ (2.65 mg, 0.006 mmol), *rac*-BINAP (7.50 mg, 0.012 mmol), hydrazine **1c** (59.2 mg, 0.2 mmol) were used. After cooling at 0 °C MeMgBr (3.0 M in Et₂O; 0.2 mL, 0.6 mmol) was added. The mixture was allowed to stir for 1 hour at 0 °C (100% conversion). The product was isolated as an oil by column chromatography eluting with hexanes/AcOEt (8:2); yield: 32 mg (75%). ¹H NMR (250 MHz, CDCl₃): δ =1.13 (d, *J*=7.0 Hz,

3H), 1.49 (s, 9H), 1.59 (ddd, J_1 =5.5 Hz, J_2 =7.8 Hz, J_3 = 13.5 Hz, 1H), 1.93 (ddd, J_1 =3.3 Hz, J_2 =7.8 Hz, J_3 =11.1 Hz, 1H), 2.78–2.91 (m, 1H), 4.08–4.17 (m, 1H), 5.51–5.58 (m, 1H), 5.80–5.89 (m, 1H), 6.06–6.19 (m, 1H); ¹³C NMR (62.5 MHz, CDCl₃): δ =21.0, 28.3, 37.4, 38.7, 66.7, 80.6, 129.3, 141.6, 156.5; anal. calcd. for C₁₁H₂₀N₂O₂: C 62.23%, H 9.50%; found: C 62.30%, H 9.48%.

1-(*tert*-Butoxycarbonyl)-2-[(1*R**,4*R**)-4-allylcyclopent-2-en-1-yl]hydrazine (5c) (Table 2, entry 3)

typical procedure, $Cu(OTf)_2$ (2.65 mg, Using the 0.006 mmol), rac-BINAP (7.50 mg, 0.012 mmol), hydrazine 1c (59.2 mg, 0.2 mmol) were used. The mixture was cooled at 0°C and then allylMgBr (1.0M in Et₂O; 0.6 mL, 0.6 mmol) was added. The mixture was allowed to react for 1 hour at 0°C (100% conversion). The product was isolated by column chromatography eluting with hexanes/AcOEt (8:2), as an oil; yield: 38 mg (80%). $^1\mathrm{H}\,\mathrm{NMR}$ (250 MHz, CDCl₃): $\delta = 1.48$ (s, 9 H), 1.67 (ddd, $J_1 = 5.5$ Hz, $J_2 = 7.8$ Hz, $J_3 = 13.2 \text{ Hz}, 1 \text{ H}$), 1.88 (ddd, $J_1 = 3.5 \text{ Hz}, J_2 = 7.8 \text{ Hz}, J_3 =$ 11.5 Hz, 1H), 2.01-2.11 (m, 2H), 2.82-2.92 (m, 1H), 3.82-4.01 (br s, 1H), 4.02-4.11 (m, 1H), 4.93-5.07 (m, 2H), 5.62-5.80 (m, 2H), 5.87-5.91 (m, 1H), 6.02-6.13 (br s, 1H); ¹³C NMR (62.5 MHz, CDCl₃): $\delta = 28.3$, 34.8, 39.9, 43.9, 66.5, 80.4, 115.8, 130.4, 136.8, 139.9, 147.6, 156.6 (w); anal. calcd. for C₁₃H₂₂N₂O₂: C 65.51%, H 9.30%; found: C 65.65%, H 9.25%.

Supporting Information

Additional experimental procedures and spectral data are available as Supporting Information.

Acknowledgements

This work was supported by Ministero dell' Istruzione, dell' Università e della Ricerca (M.I.U.R. Rome, PRIN 2006, "Catalysts, methodologies and new regio- and stereoselective processes in organic synthesis") and by the University of Pisa.

References

- [1] M. T. Crimmins, Tetrahedron 1998, 54, 9229-9272.
- [2] S. M. Daluge, M. T. Martin, B. R. Sickles, D. A. Livingstone, *Nucleosides Nucleotides Nucleic Acids* 2000, 19, 297–327.
- [3] a) T. Ainai, Y.-G. Wang, Y. Tokoro, Y. Kobayashi, J. Org. Chem. 2004, 69, 655–659; see also: b) Y. Kobayashi, K. Nakata, T. Ainai, Org. Lett. 2005, 7, 183–186, and references cited therein.
- [4] A. Pérez. Luna, M. Cesario, M. Bonin, L. Micouin, Org. Lett. 2003, 5, 4771–4774.
- [5] a) V. S. Sajisha, K. V. Radhakrishnan, Adv. Synth. Catal. 2006, 348, 924–930; b) C. Bournard, D. Robic, M. Bonin, L. Micouin, J. Org. Chem. 2005, 70, 3316– 3317; c) M. Pineschi, F. Del Moro, P. Crotti, F. Macchia, Org. Lett. 2005, 7, 3605–3608; d) K. V. Radhakrishnan, S. V. Sajisha, S. Anas, K. S. Krishnan, Synlett 2005, 2273–2276; e) C. Bournaud, C. Falciola, C. Lecourt, S.

Rosset, A. Alexakis, L. Micouin, Org. Lett. 2006, 8, 3581–3584; f) J. John, V. S. Sajisha, S. Mohanlal, K. V. Radhakrishnan, Chem. Commun. 2006, 3510–3512; g) F. Bertolini, F. Macchia, M. Pineschi, Tetrahedron Lett. 2006, 47, 9173–9176; h) F. Menard, C. F. Weise, M. Lautens, Org. Lett. 2007, 9, 5365–5367; i) F. Menard, M. Lautens, Angew. Chem. 2008, 120, 2115–2118; Angew. Chem. Int. Ed. 2008, 47, 2085–2088; j) S. Crotti, F. Bertolini, F. Macchia, M. Pineschi, Chem. Commun. 2008, 3127–3129.

- [6] The reaction of acylnitroso Diels–Alder cycloadducts with Grignard reagents catalyzed by copper salts gave only minor amounts of *trans*-1,4-hydroxamic acid derivatives: M. D. Surman, M. J. Mulvihill, M. J. Miller, J. Org. Chem. 2002, 67, 4115–4121.
- [7] a) C.-Y. Chung, D. Mackay, T. D. Sauer, *Can. J. Chem.* **1972**, *50*, 1568–1573; b) D. Mackay, C. W. Pilger, L. L. Wong, *J. Org. Chem.* **1973**, *38*, 2043–2049; c) J. J. Tufariello, J. J. Spadaro, Jr., *Tetrahedron Lett.* **1969**, 3935– 3938.
- [8] a) The presence of rotamers in the ¹H and ¹³C NMR analysis of *p*-Br-benzoyl- and *p*-nitrobenzoyl derivatives of compound **3c** (see compounds **7–9** in Supporting Information), and the formation of addition products of types **5** and **6** (not bearing the carbamate protection on the nitrogen linked to the cyclopentene framework, see Table 2 and Scheme 2), indicate the necessary occurrence of a 5,5-fused ring system. After the preparation of this manuscript, X-ray crystallographic proof on related derivatives was independently obtained by Mark Lautens and co-workers: b) A. Martins, S. Lemouzy, M. Lautens, *Org. Lett.* **2009**, *11*, 181–183.
- [9] The reaction catalyzed by 3.0 mol% of Cu(OTf)₂, without added phosphine, was complete in *ca*. 3 h at room

temperature. PPh_3 and Josiphos-type ligands gave a similar acceleration of the rearrangement. On the other hand, Monophos and triethyl phosphite delayed the rearrangement.

- [10] However, an alternative stepwise mechanism in which the N-Boc protecting group acts as a nucleophile thus trapping an allylic cation intermediate cannot be ruled out. For a review on the reactivity of N-Boc protecting group, see: C. Agami, F. Couty, *Tetrahedron* 2002, 58, 2701–2724.
- [11] For reviews, see: a) B. Breit, P. Demel, in: Modern Organocopper Chemistry, (Ed.: N. Krause) Wiley-VCH, Weinheim, 2002, pp 188–223; b) A. S. E. Karlstrom, J.-E. Bäckvall, in: Modern Organocopper Chemistry, (Eds.: N. Krause) Wiley-VCH, Weinheim, 2002, pp. 259–288.
- [12] The use of a reversed order of addition (i.e., the substrate **1c** was added to the *in situ* formed magnesium cuprate) gave a completely different product distribution. In this case an inseparable mixture of regioisomeric adducts bearing a double protection of the hydrazine moiety was obtained.
- [13] M. Matsuumi, M. Ito, Y. Kobayashi, Synlett 2002, 1508–1510.
- [14] For copper directed allylic substitutions, see: B. Breit,
 P. Demel, *Adv. Synth. Catal.* 2001, 343, 429–432, and pertinent references cited therein.
- [15] M. Ge, E. Cline, L. Yang, *Tetrahedron Lett.* 2006, 47, 5797–5799.
- [16] R. Kuang, A. K. Ganguly, T.-M. Chan, B. N. Pramanik, D. J. Blythin, A. T. Maphail, A. K. Saksena, *Tetrahedron Lett.* 2000, 41, 9575–9579.
- [17] For example, see: D. Enders, R. Lochtman, *Eur. J. Org. Chem.* **1998**, 689–696.