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ABSTRACT: Allylboronates are unique building blocks widely
used in organic synthesis, but the construction of cyclic
allylboranates remains a challenging subject. We demonstrate
here a mild and efficient access to this type of compound through
the cross-electrophile coupling of vinyl triflates and α-chlorobor-
onates. The reaction proceeded with a good substrate scope and
good functional group compatibility. The ready availability of vinyl
triflates from ketones, as well as the rich chemistry of allylboranates, makes our method suitable for the divergent modification of
biologically active compounds. Preliminary mechanistic studies revealed that α-chloroboronates were activated via a radical process.

Allylboronates are essential building blocks frequently used
in the synthesis of natural compounds and pharmaceut-

icals.1 They have widely served as coupling partners in the
Suzuki−Miyaura reaction for the precise installation of an allyl
group.2 They are also used as nucleophiles for additions to
aldehydes and imines to afford homoallylic alcohols and
amines.1 Therefore, the synthesis of allylboronates has received
considerable attention over the past years.3 Approaches to
these compounds typically include,4 but are not limited to, (1)
the boration reactions of allylic substrates such as allyl
nucleophiles,5 electrophiles (e.g., halides, acetates, alcohols),6

and C−H bonds,7 (2) the hydroboration or diboration
reactions of 1,3-dienes,8 and (3) the hydroboration reactions
of allenes.9 Despite these promising advances, these processes
are generally effective for the synthesis of acyclic allylboro-
nates. To date, a method for the construction of cyclic
allylboronates, with the structure shown in Scheme 1b, remains
to be developed.

One strategy that could be used to overcome this limitation
would be the reaction of well-defined vinyl species with α-
haloboronates (Scheme 1).10 In this context, the nucleophilic
substitution reactions using vinyl metallic species (e.g., vinyl−
M, M = Li, Mg, Al, Cu) represent the current state-of-the-art
(Scheme 1a). However, partially because of the difficulty in
accessing cyclic vinyl metals, these reactions have rarely been
investigated for the synthesis of cyclic allylboronates. The use
of vinyl electrophiles instead of vinyl metals is advantageous in
availability, and it would provide access to a complementary
scope of synthetically useful products. However, to our
knowledge, there has been no report on the reaction between
vinyl electrophiles and α-haloboronates.
The cross-electrophile coupling has recently emerged as a

powerful tool for forging C−C bonds between electrophiles.11

Among the various coupling partners, the amphoteric reagents
such as α-haloboronates and α-halosilanes are particularly
attractive.12 These reagents possess nucleophilic and electro-
philic sites, thus offering a versatile platform for chemoselective
transformations. Recent elegant work by the Martin group has
demonstrated the possibility of chemoselective arylation and
alkylation of α-haloboronates with aryl bromides and alkenes,
respectively.12b However, the cross-electrophile vinylation
reaction is still unknown. As part of our ongoing interest in
reductive vinylation reactions,13 here we demonstrate a cross-
electrophile coupling of vinyl triflates14 with α-haloboronates
(Scheme 1b). This method provides a mild and efficient
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Scheme 1. Synthesis of Allylboronates from α-
Haloboronates
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approach to cyclic allylboronates that can be otherwise difficult
to access. It thus serves as a good complementary to the
existing methodologies for the construction of allylboronates.
We began our investigations by studying the reaction of α-

chloroboronate 1a with vinyl triflate 2a (Table 1). After

screening a range of reaction conditions (see Tables S1−S7),
we found that the combination of NiBr2 (10 mol %), bpy (22
mol %), NaBr (1.0 equiv), and Mn (3.0 equiv) in DMF at −15
°C gave the best result, affording 3a in 84% isolated yield
(entry 1). Compatible results were obtained when NiCl2 or
NiI2 was used, whereas the reactions with Ni(dme)Cl2 or
Ni(glyme)Br2 gave decreased yields (entries 2−5). The
inferior results were obtained when other nitrogen ligands
were used (entries 6−9). The presence of NaBr has a positive
effect on the yield, in which the formation of a vinyl dimer
byproduct was partly inhibited (entry 10). It is possible that
the in situ halide exchange of NaBr with α-chloroboronate
generates α-bromoboronate, which is more reactive and may
couple to vinyl triflate more efficiently. The reaction at room
temperature afforded a significant amount of vinyl dimer,
leading to a decreased yield (entry 11). The reaction with Zn
as a reductant was highly ineffective (entry 12). In the absence
of a nickel catalyst or reductant, no desired product was
observed (entry 13).
With the optimized reaction conditions in hand, we studied

the reaction with respect to the scope of vinyl triflates (Table
2). The cyclic vinyl triflates, ranging from five- to eight-
membered rings, coupled to 1a efficiently to afford the desired
products in moderate to good yields (3a−d). Whereas the 2-
substituted vinyl triflate resulted in a low yield of product 3e,
substitution at the 3- and 4-position was tolerated (3f−k). The
moderate yields of coupling products were obtained when
indenyl triflate (3l) and 3,4-dihydronaphthalenyl triflate (3m)
were used. Nonaromatic heterocycles are essential structural

motifs found in various pharmaceuticals.15 Our method
provides an efficient approach to produce heterocyclic
allylboronates, including those bearing 3,6-dihydro-2H-thio-
pyran (3n) and 3-piperideine (3o) heterocycles. Reactions
with acyclic vinyl substrates were less effective under the
standard conditions. By changing the ligand to 4,7-diphenyl-
1,10-phenanthroline, the reactions with 1a afforded the desired
products in moderate yields (3p, 3q). Only a trace of product
was observed when all-substituted acyclic vinyl triflate was
used (3r). The use of phenyl triflate afforded the desired
product in 13% yield (3s). The abundance of ketones in nature
prompted us to investigate the potential of our method for the
functionalization of biologically active molecules. Testoster-
one- and estrone-derived vinyl triflates coupled to 1a
efficiently, and allylboronate 3t and 3u were produced in
moderate to good yield.
The substrate scope of α-chloroboronates is shown in Table

3. α-Chloroboronates with different chain lengths of the alkyl
group were tolerated (3v, 3w, 3x). The reactions with sterically
hindered substrates were less effective (3y, 3z). The presence
of an aryl group, bearing either electron-rich or electron-poor
substituents, at the alkyl chain was tolerated (3aa−ad). The
reaction has shown good functional group compatibility. α-

Table 1. Optimization of Reaction Conditionsa

entry change of conditions 3a (%)

1 none 86 (84)b

2 NiCl2 80
3 NiI2 82
4 Ni(dme)Cl2 74
5 Ni(diglyme)Br2 77
6 L1 instead of bpy 61
7 L2 instead of bpy 4
8 L3 instead of bpy 71
9 L4 instead of bpy 35
10 no NaBr 78
11 r.t. instead of −15 °C 61
12 Zn instead of Mn 22
13 no Ni or Mn 0

a1a (0.18 mmol) and 2a (0.1 mmol) were used. The yields were
determined by GC using dodecane as an internal standard. b1a (0.36
mmol) and 2a (0.2 mmol) were used. Isolated yield.

Table 2. Substrate Scope of Vinyl Triflatesa

a1a (0.36 mmol) and vinyl triflates (0.2 mmol) were used. Isolated
yields. bNMR yield was used because of the difficulty in purification
with the dechloro byproduct of α-chloroboronates. c4,7-Diphenyl-
1,10-phenanthroline was used instead of 2,2′-bipyridine. dPhenyl
triflate (0.2 mmol) was used.
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Chloroboronates with functionalities, such as alkene (3ae),
nitrile (3af), alkyl chloride (3ag), ether (3ah), and silyl ether
(3ai), could be selectively vinylated to afford the products in
moderate to good yields.
The modification of biologically active compounds repre-

sents a promising approach to alter their pharmacological
profiles. Our method offers the opportunity for the divergent
modification of these compounds. For example, estrone-
derived vinyl triflates could be functionalized with 1b on the
gram scale to afford allylboronate 3aj (Scheme 2). Because of

the rich chemistry of allylboronate, compound 3aj could
undergo divergent transformation to provide the hydration
product 4, the vinylation product 5, and the addition product
6.
In the presence of 1,1-diphenylethylene, the reaction of 1a

with 2a afforded 3a in 80% yield, along with 13% of alkene
trapping product 7 (Scheme 3 (1)). This result suggests that
α-chloroboronates might be activated via a radical mechanism.
To confirm this hypothesis, several control experiments were
performed. (1) The reaction of cyclopropyl substrate 1p with
2a exclusively produced the ring-opening product (Scheme 3

(2a)).16 (2) Under the standard conditions, the reaction of
alkene substrate 1q with 2a afforded the cyclized product 11 in
14% yield (Scheme 3 (2b)). (3) The reaction of racemic 1a
afforded allylboronate 12 in 22% ee when chiral ligand L* was
used (Scheme 3 (3)). These results are consistent with a
pathway in which a radical process might be involved in the
activation of α-chloroboronates.
Although the detailed mechanism for this reaction requires

further investigation, on the basis of the above results and on
reports presented by other investigators,17 we tentatively
proposed a catalytic cycle, as shown in Scheme 4. The

oxidative addition of vinyl triflate to Ni(0) would afford vinyl−
Ni(II) (A), which may trap an alkyl radical to afford complex
C.17a The reductive elimination of compound C would give the
desired product 3 and generate Ni(I). Alkyl radical B might be
generated via the single-electron reaction of α-chloroboronates
1 with Ni(I).17c

In summary, we have demonstrated the cross-electrophile
coupling of vinyl triflates with α-chloroboronates. This

Table 3. Substrate Scope of α-Chloroboronatesa

a2o (0.20 mmol) and α-chloroboronates (0.36 mmol) were used.
Isolated yields. bReactions for 36 h.

Scheme 2. Synthetic Application

Scheme 3. Mechanistic Studies

Scheme 4. Proposed Mechanism
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reaction offers a mild and efficient approach for the synthesis
of cyclic allylboronates, which are difficult to access otherwise.
The synthetic utility of this method was demonstrated by its
application to the divergent modification of biologically active
molecules. Preliminary mechanistic experiments revealed that a
radical process was involved in the activation of α-
chloroboronates. Further studies on the reductive vinylation
reactions are ongoing in our laboratories.
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