Bioorganic & Medicinal Chemistry Letters 20 (2010) 4503-4506

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Natural products-based insecticidal agents 6. Design, semisynthesis, and insecticidal activity of novel monomethyl phthalate derivatives of podophyllotoxin against Mythimna separata Walker in vivo

Hui Xu*, Xiao-Qiang He

Laboratory of Pharmaceutical Design and Synthesis, College of Sciences, Northwest A&F University, Yangling 712100, China

ARTICLE INFO

Article history: Received 16 March 2010 Revised 3 June 2010 Accepted 7 June 2010 Available online 10 June 2010

Keywords: Podophyllotoxin Phthalate Synthesis Insecticidal activity

ABSTRACT

To discover the more potent analogs, 12 novel monomethyl phthalate derivatives of podophyllotoxin were synthesized and preliminarily tested against the pre-third-instar larvae of Mythimna separata Walker in vivo at the concentration of 1 mg/mL. Compounds 8e-i showed the higher insecticidal activity than podophyllotoxin. Especially 8g exhibited the most potent insecticidal activity compared with toosendanin, a commercially available insecticide derived from Melia azedarach. The structure-activity relationships demonstrated that *trans*-lactone, 4β-substitution, 2β-chlorine substitution, and 4'-methoxy group were the important structural properties of podophyllotoxins for good insecticidal activity.

© 2010 Elsevier Ltd. All rights reserved.

The routine use of a wide variety of synthetic insecticides in agriculture has now become an accepted practice, however, the use of these chemicals over the years has resulted in the development of resistance in insect pest populations and environmental problems. Plant secondary metabolites result from the interaction between plants and environment (life and non-life) during the long period of evolution in plants. Consequently, the discovery of new insecticidal compounds from plant secondary metabolites, followed by using them as the lead-compounds for further modification has been one of the important ways for the research and development of new pesticides. Podophyllotoxin (1, Fig. 1), a naturally occurring aryltetralin lignan, besides its use as the lead-compound for the generation of potent anticancer drugs,¹ exhibited the interesting insecticidal activity.²⁻⁴

More recently, 4β-benzenesulfonamides of podophyllotoxin,⁵ 4α -esters of 2β -chloropodophyllotoxin,⁶ and 4'-aromatic esters/ substituted benzenesulfonates of 4-deoxypodophyllotoxin^{7,8} have been designed and prepared from 1 in our research group, and some derivatives have showed more potent insecticidal activity than 1. However, to the best of our knowledge, it has never been investigated the effect of the configurations of C-2 and C-4, and the methoxy group at the C-4' position of podophyllotoxin on the insecticidal activity. Meanwhile, introduction of the phthalate groups to the molecule would usually increase toxicity,^{9,10} therefore, in this Letter we introduced the monomethyl phthalate

E-mail address: orgxuhui@nwsuaf.edu.cn (H. Xu).

As shown in Scheme 1, picropodophyllotoxin (2) was prepared from 1 in the presence of absolute ethanol and 10% aqueous sodium acetate, followed by recrystallization from absolute ethanol.¹¹ Epipodophyllotoxin (**3**) was obtained when **1** reacted with NaI and BF₃·Et₂O in dry CH₃CN, followed by treatment with acetone, H_2O and anhydrous BaCO₃.¹² 2 β -Chloropodophyllotoxin (4) and 4β -aminopodophyllotoxin (5) were synthesized according to our previous methods.^{6,13} Subsequently, 4'-demethylepipodophyllotoxin (6) was prepared by the reaction of 1 with NaI and Me-SO₃H in dry CH₂Cl₂, followed by treatment with acetone, H₂O and anhydrous BaCO₃.¹⁴ Finally, we introduced MMP substituents (**7**) to podophyllotoxin derivatives (1-6) via the ester or amido bond. As outlined in Scheme 2, compounds 1-6 reacted smoothly with 7 in the presence of diisopropylcarbodiimide (DIC) and 4-dimeth-

Figure 1. Chemical structure of podophyllotoxin (1).

^{*} Corresponding author. Tel./fax: +86 29 87091952.

⁽MMP) groups to podophyllotoxins for their insecticidal activity studies.

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2010.06.032

Scheme 1. Synthesis of podophyllotoxin derivatives 2-6.

8k: R¹ = H, X = β-O, R² = β-H, R³ =
$$(\begin{array}{c} 0 \\ - 0 \\ - 0 \\ - 7 \\ -$$

Scheme 2. Synthesis of target compounds 8a-l.

ylaminopyridine (DMAP) at room temperature to afford the target compounds **8a–1** in 33–79% yields. The structures of **8a–1** were well characterized by ¹H NMR, MS, HRMS, and mp.¹⁵

The insecticidal activity of compounds **8a–1** against the prethird-instar larvae of *Mythimna separata* Walker was assessed at the concentration of 1 mg/mL by leaf-dipping method.⁷ Toosendanin, a commercially available insecticide derived from *Melia azed-arach*, was used as a positive control.

As shown in Table 1, it indicated that the corresponding corrected mortality rates caused by these compounds after 33 d were higher than those after 10 d and 20 d. That is, these compounds, different from those conventional neurotoxic insecticides, such as

Table 1 Insecticidal activity of 8a-l against *M. separata* in vivo at 1 mg/mL

Compounds	Corrected mortality rate (%)		
	10 d	20 d	33 d
8a	16.6 (± 4.7)	24.1 (± 9.4)	35.7 (± 0.0)
8b	6.6 (± 4.7)	6.9 (± 0.0)	21.4 (± 4.7)
8c	10.0 (± 8.1)	10.3 (± 9.4)	17.8 (± 4.7)
8d	13.3 (± 4.7)	13.7 (± 9.4)	14.2 (± 8.1)
8e	10.0 (± 8.1)	20.6 (± 4.7)	38.5 (± 4.7)
8f	10.0 (± 8.1)	17.2 (± 14.1)	42.8 (± 9.4)
8g	16.6 (± 12.4)	31.0 (± 17.0)	53.5 (± 9.4)
8h	30.0 (± 8.1)	41.3 (± 4.7)	46.4 (± 8.1)
8i	6.6 (± 9.4)	10.3 (± 4.7)	42.8 (± 9.4)
8j	10.0 (± 8.1)	20.6 (± 4.7)	35.7 (± 8.1)
8k	16.6 (± 4.7)	17.2 (± 8.1)	21.4 (± 12.4)
81	16.6 (± 4.7)	20.6 (± 4.7)	28.5 (± 4.7)
1	16.6 (± 9.4)	20.6 (± 4.7)	35.7 (± 8.1)
Toosendanin	30.0 (± 14.1)	31.0 (± 9.4)	50.0 (± 12.4)

organophosphates, carbamates, and pyrethroids, exhibited delayed insecticidal activity.^{5–8} For example, the corrected mortality rate of 8i against *M. separata* after 10 d was only 6.6%, after 20 d the corresponding mortality rate was increased to 10.3%, but after 33 d it was sharply increased to 42.8%, which was more than six times of the mortality rate after 10 d. On the other hand, the symptoms of the tested M. separata were also characterized by the same way as our previous reports.^{5–8} After 24 h the movement of the *M. sep*arata treated by these compounds decreased greatly, and some of them were becoming immobilized and loss of body liquid after 48 h. Some of the treated M. separata showed moulting disturbances or deformities. For example, the pupation of the larvae and the adult emergence of *M. separata* were inhibited by these compounds, therefore, the stage from the larvae to adulthood of *M. separata* was prolonged as compared to the control group. Moreover, many larvae of the treated groups molted to abnormal pupae, which could not reach adulthood and died during the stage of pupation because they were not able to remove their pupal skin.

Among all the tested derivatives, compounds 8e-i showed the higher insecticidal activity than 1. Especially 8g exhibited the more potent insecticidal activity than toosendanin (53.5% for 8g vs 50.0% for toosendanin). Through a comparative study on the general relationship between the chemical structures of 8a-1 and the insecticidal activity (SAR), some interesting results were found as follows: (1) The *trans*-lactone derivatives were more active than the *cis*-lactone ones. That is, the inversion of configuration of the lactone would reduce the insecticidal activity. For example, corrected mortality rates after 33 d of 8a and 8b were 35.7% and 21.4%, respectively; while corrected mortality rates of the corresponding cis-lactone ones 8c and 8d were 17.8% and 14.2%, respectively. (2) The β configuration of the substituents at the C-4 position was very important for their insecticidal activity. That is, the insecticidal activity of 4α -substituted podophyllotoxins was less potent than the 4 β -substituted ones (35.7% for **8a** vs 38.5% for 8e; 21.4% for 8b vs 42.8% for 8f). (3) The C-2 substitution of the podophyllotoxin by chlorine could enhance the insecticidal activity as our previous reports.⁶ For example, the 2β-chloropodophyllotoxin analogs 8g and 8h exhibited the more potent activity than the corresponding podophyllotoxin ones 8a and 8b (53.5% for 8g vs 35.7% for 8a; 46.4% for 8h vs 21.4% for 8b). (4) The ester bond at the C-4 position could be replaced with the amido bond, and the corresponding compounds still showed the potent insecticidal activity (38.5% for 8e vs 42.8% for 8i; 42.8% for 8f vs 35.7% for 8j). (5) The methyl group at the C-4' position of 8e or 8f was necessary for its insecticidal activity. When the 4'-methyl group of 8e or **8f** was substituted by other group (*o*-(methoxycarbonyl)benzoyl or 2-(methoxycarbonyl)-6-nitrobenzoyl) to give **8k** or **8l**, the In summary, twelve novel monomethyl phthalate derivatives of podophyllotoxin were synthesized and preliminarily tested against the pre-third-instar larvae of *M. separata* in vivo at the concentration of 1 mg/mL. Among all the tested derivatives, compounds **8e-i** showed the higher insecticidal activity than podophyllotoxin. Especially **8g** exhibited the most potent insecticidal activity compared with toosendanin, a commercially available insecticide derived from *M. azedarach*. SAR indicated that *trans*-lactone, 4β-substitution, 2βchlorine substitution, and 4'-methoxy group were the important structural properties of podophyllotoxins for good insecticidal activity. It will pave the way for the design and development of podophyllotoxin derivatives as insecticidal agents in the future.

Acknowledgments

This work was financially supported by the Program for New Century Excellent University Talents, State Education Ministry of China (NCET-06-0868), the Research Fund for the Doctoral Program of Higher Education of China (No. 20070712025), and the Fok Ying Tong Education Foundation for Young Talents (No. 121032).

References and notes

- 1. Xu, H.; Lv, M.; Tian, X. Curr. Med. Chem. 2009, 16, 327.
- Kozawa, M.; Baba, K.; Matsuyama, Y.; Kido, T.; Sakai, M.; Takemoto, T. Chem. Pharm. Bull. 1982, 30, 2885.
- Inamori, Y.; Kubo, M.; Kato, Y.; Tsujibo, H.; Sakai, M.; Kozawa, M. Chem. Pharm. Bull. 1986, 34, 2542.
- Miyazawa, M.; Fukuyama, M.; Yoshio, K.; Kato, T.; Ishikawa, Y. J. Agric. Food Chem. 1999, 47, 5108.
- 5. Xu, H.; Zhang, L.; Su, B. F.; Zhang, X.; Tian, X. Heterocycles 2009, 77, 293.
- 6. Xu, H.; Xiao, X. Bioorg. Med. Chem. Lett. 2009, 19, 5415.
- Xu, H.; Wang, J. J.; Sun, H. J.; Lv, M.; Tian, X.; Yao, X. J.; Zhang, X. J. Agric. Food Chem. 2009, 57, 7919.
- 8. Xu, H.; Wang, J. J. Bioorg. Med. Chem. Lett. 2010, 20, 2500.
- 9. Parveen, M.; Inoue, A.; Ise, R.; Tanji, M.; Kiyama, R. *Environ. Toxicol. Chem.* **2008**, 27, 1416.
- Nomura, Y.; Mitsui, N.; Bhawal, U. K.; Sawajiri, M.; Tooi, O.; Takahashi, T.; Okazaki, M. Dent. Mater. J. 2006, 25, 533.
- 11. Gensler, W. J.; Gatsonis, C. D. J. Org. Chem. 1966, 31, 3224.
- 12. Kamal, A.; Kumar, B. A.; Arifuddin, M. Tetrahedron Lett. 2003, 44, 8457.
- 13. Xu, H.; Zhang, L.; Tian, X. Chin. J. Org. Chem. 2008, 28, 1243.
- 14. Kamal, A.; Laxman, N.; Ramesh, G. Bioorg. Med. Chem. Lett. 2000, 10, 2059.
- 15. Spectral data for compound 8a: 40% yield, white solid, mp 97-101 °C; $[\alpha]_D^{24} = -114.3$ (c 2.1 mg/mL, CHCl₃); The INVIN (1400 Minu, etc.), J = 7.2, 1.2 Hz, 1H), 7.67 (dd, J = 7.2, 1.2 Hz, 1H), 7.55–7.63 (m, 2H), 6.91 (s, 1H, J = 7.2, 1.2 Hz, 1H), 7.67 (dd, J = 7.2, 1H), 7.67 (dd, J = 7.2= -114.3 (c 2.1 mg/mL, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.85 (dd, H-5), 6.55 (s, 1H, H-8), 6.39 (s, 2H, H-2', 6'), 6.13-6.15 (m, 1H, H-4), 5.97 (d, J = 2.0 Hz, 2H, OCH₂O), 4.63-4.69 (m, 2H, H-1, H-11), 4.32-4.37 (m, 1H, H-11), 3.85 (s, 3H, CO₂CH₃), 3.80 (s, 3H, 4'-OCH₃), 3.71 (s, 6H, 3', 5'-OCH₃), 2.99-3.00 (m, 2H, H-2, H-3); EI-MS m/z (%): 576 (M⁺, 9); HRMS-ESI: calcd for C₃₁H₃₂NO₁₁ ([M+NH4]*), 594.1970; found, 594.1973. Compound 8b: 56% yield, light yellow, (1) m_{1}^{0} 109 °C; $(z)_{24}^{24}$ = -119.1 (*c* 2.1 mg/mL, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.41 (d, *J* = 8.0 Hz, 1H), 8.33 (d, *J* = 8.0 Hz, 1H), 7.73 (t, *J* = 8.0 Hz, 1H), 6.83 (s, 1H, H-5), 6.59 (s, 1H, H-8), 6.42 (s, 2H, H-2', 6'), 6.13 (d, J = 8.0 Hz, 1H, H-4), 6.00 (d, J = 8.4 Hz, 2H, OCH₂O), 4.65 (d, J = 3.2 Hz, 1H, H-1), 4.43-4.47 (m, 1H, H-11), 4.25-4.30 (m, 1H, H-11), 3.89 (s, 3H, CO₂CH₃), 3.80 (s, 3H, 4'-OCH₃), 3.77 (s, 6H, 3', 5'-OCH₃), 2.96–2.98 (m, 2H, H-2, H-3); EI-MS m/z (%): 621 (M⁺, 3); HRMS-ESI: calcd for C₃₁H₃₁N₂O₁₃ ([M+NH₄]⁺), 639.1821; found, 639.1822. *Compound* **8c**: 70% yield, white solid, mp 70–72 °C; $[\alpha]_{D}^{24} = -42.9$ (*c* 4.2 mg/mL, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 7.76-7.78 (m, 1H), 7.50-7.56 (m, 2H), 7.37-7.39 (m, 1H), 6.91 (s, 1H, H-5), 6.58 (s, 1H, H-8), 6.35 (s, 2H, H-2', 6'), 5.95-6.00 (m, 3H, H-4, OCH20), 4.46-4.51 (m, 3H, H-1, H-11), 3.81 (s, 3H, CO2CH3), 3.77 (s, 3H, 4'-OCH3), 3.53 (s, 6H, 3', 5'-OCH3), 3.28-3.29 (m, 2H, H-2, H-3); EI-MS m/z (%): 576 (M⁺, 2); HRMS-ESI: calcd for C₃₁H₃₂NO₁₁ ([M+NH₄]⁺), 594.1970; found, 594.1966. Compound 8d: 76% yield, light yellow, mp 127 4 = 100 (c 4.2 mg/mL, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.29 (dd, 128 °C: $[\alpha]_{p}^{2}$ J = 8.0, 1.2 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.25–7.27 (m, 1H), 6.91 (s, 1H, H-5), 6.72 (s, 1H, H-8), 6.36 (s, 2H, H-2', 6'), 5.99 (dd, J = 10.0, 1.2 Hz, 2H, OCH₂O), 5.94 (d, J = 3.2 Hz, 1H, H-4), 4.52-4.56 (m, 2H, H-1, H-11), 4.16-4.20 (m, 1H, H-

11), 3.97 (s, 3H, CO2CH3), 3.82 (s, 3H, 4'-OCH3), 3.68 (s, 6H, 3', 5'-OCH3), 3.55-3.58 (m, 1H, H-3), 3.22-3.27 (m, 1H, H-2); ESI-MS m/z (%): 639 ([M+NH₄]⁺ 100); HRMS-ESI: calcd for $C_{31}H_{31}N_2O_{13}$ ([M+NH₄]⁺), 639.1821; found, 639.1826. Compound **8e**: 79% yield, white solid, mp 96–99 °C; $[\alpha]_D^{24}$ = -61 (c4.1 mg/mL, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 7.75–7.77 (m, 1H), 7.61–7.64 (m, 1H), 7.54–7.57 (m, 2H), 7.05 (s, 1H, H-5), 6.56 (s, 1H, H-8), 6.36 (d, J = 3.6 Hz, 1H, H-4), 6.30 (s, 2H, H-2', 6'), 5.98 (dd, J = 9.6, 1.2 Hz, 2H, OCH₂O), 4.67 (d, J = 5.2 Hz, 1H, H-1), 4.42-4.47 (m, 1H, H-11), 4.13-4.18 (m, 1H, H-11), 3.81 (s, 3H, CO2CH3), 3.80 (s, 3H, 4'-OCH3), 3.75 (s, 6H, 3', 5'-OCH3), 3.21-3.26 (m, 1H, H-3), 3.07-3.13 (m, 1H, H-2); EI-MS m/z (%): 576 (M⁺, 3); HRMS-ESI: calcd for $C_{31}H_{32}NO_{11}$ ([M+NH₄]⁺), 594.1970; found, 594.1965. *Compound* **8f**: 76% yield, light yellow, mp 140–142 °C; $[\alpha]_D^{24} = -114$ (*c* 5.7 mg/mL, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.39 (d, *J* = 8.4 Hz, 1H), 8.28 (d, *J* = 8.0 Hz, 1H), 7.70 (t, J = 8.0 Hz, 1H), 6.89 (s, 1H, H-5), 6.60 (s, 1H, H-8), 6.37 (d, J = 3.2 Hz, 1H, H-4), 6.29 (s, 2H, H-2', 6'), 6.00 (d, J = 6.8 Hz, 2H, OCH₂O), 4.72 (d, J = 5.2 Hz, 1H, H-1), 4.38-4.42 (m, 1H, H-11), 3.87-3.95 (m, 1H, H-11), 3.80 (s, 3H, 4'-OCH₃), 3.75 (s, 9H, CO₂CH₃, 3', 5'-OCH₃), 3.25-3.30 (m, 1H, H-3), 3.07-3.11 (m, 1H, H-2); ESI-MS *m*/*z* (%): 622 ([M+H]⁺, 100); HRMS-ESI: calcd for C₃₁H₃₁N₂O₁₃ ([M+NH₄]⁺), 639.1821; found, 639.1816. *Compound* **8g**: 59% yield, white solid, mp 205–207 °C; $|x|_{D}^{24} = -151.7$ (*c* 2.9 mg/mL, CHCl₃); ¹H NMR (400 MHz, CDCl₃) & 7.87– 7.89 (m, 1H), 7.56–7.65 (m, 3H), 6.93 (s, 1H, H-5), 6.56 (s, 1H, H-8), 6.43 (s, 2H, H-2', 6'), 6.23 (d, J = 8.8 Hz, 1H, H-4), 5.99 (s, 2H, OCH₂O), 4.80 (s, 1H, H-1), 4.62-4.74 (m, 2H, H-11), 3.83 (s, 3H, CO2CH3), 3.79 (s, 3H, 4'-OCH3), 3.69 (s, 6H, 3', 5'-OCH₃), 3.26-3.32 (m, 1H, H-3); ESI-MS m/z (%): 611 ([M+H]⁺, 3); HRMS-ESI: calcd for C₃₁H₃₁NO₁₁Cl ([M+NH₄]⁺), 628.1580; found, 628.1587. Compound **2h**: 60% yield, light yellow, mp 147–140 °C; $|x|_D^{24} = -96.6$ (*c* 2.9 mg/mL, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ : 8.41 (d, *J* = 8.4 Hz, 1H), 8.31 (d, *J* = 7.6 Hz, 1H), 7.73 (t, J = 8.0 Hz, 1H), 6.88 (s, 1H, H-5), 6.60 (s, 1H, H-8), 6.47 (s, 2H, H-2', 6'), 6.25 (d, J = 9.2 Hz, 1H, H-4), 6.01 (d, J = 10.8 Hz, 2H, OCH₂O), 4.83 (s, 1H, H-1), 4.56-4.61 (m, 1H, H-11), 4.42-4.46 (m, 1H, H-11), 3.90 (s, 3H, CO₂CH₃), 3.79 (s, 3H, 4'-OCH₃), 3.76 (s, 6H, 3', 5'-OCH₃), 3.18–3.32 (m, 1H, H-3); ESI-MS m/z (%): 673 ($[M+NH_4]^+$, 100); HRMS-ESI: calcd for $C_{31}H_{30}N_2O_{13}Cl$ ($[M+NH_4]^+$),

673.1431; found, 673.1429. Compound 8i: 60% yield, white solid, mp 115-119 °C; $[x]_D^{24} = -56.7 (c - 3.0 mg/mL, CHC_3);$ ¹H NMR (400 MHz, CDCl₃) δ ; 7.91(dd, J = 7.6, 1.2 Hz, 1H), 7.42–7.57 (m, 3H), 7.02 (s, 1H, H-5), 6.50 (s, 1H, H-8), 6.29 (s, 2H, H-2', 6'), 6.10 (d, J = 6.4 Hz, 1H, H-4), 5.95-5.98 (m, 2H, OCH₂O), 5.38 (dd, J = 6.4, 4.4 Hz, 1H, NH), 4.51–4.56 (m, 2H, H-1, H-11), 4.23–4.28 (m, 1H, H-11), 3.92 (s, 3H, CO₂CH₃), 3.79 (s, 3H, 4'-OCH₃), 3.74 (s, 6H, 3', 5'-OCH₃), 2.99-3.06 (m, 1H, H-3), 2.90-2.95 (m, 1H, H-2); ESI-MS m/z (%): 576 ([M+H]+, 100); HRMS-ESI: calcd for C₃₁H₃₀NO₁₀ ([M+H]⁺), 576.1864; found, 576.1870. Compound **8j**: 53% yield, light yellow, mp 177–178 °C; $[\alpha]_{24}^{24} = -20 (c 1.0 \text{ mg/mL}, \text{CHCl}_3);$ ¹H NMR (400 MHz, CDCl₃) δ : 8.18–8.20 (m, 1H), 7.87–7.89 (m, 1H), 7.63 (t, J = 8.0 Hz, 1H), 6.84 (s, 1H, H-5), 6.59 (d, J = 7.2 Hz, 1H, H-4), 6.51 (s, 1H, H-8), 6.26 (s, 2H, H-2', 6'), 5.97-5.99 (m, 2H, OCH2O), 5.36 (dd, J = 7.6, 4.4 Hz, 1H, NH), 4.57 (d, J = 5.2 Hz, 1H, H-1), 4.44-4.48 (m, 1H, H-11), 3.92-3.97 (m, 4H, H-11, CO₂CH₃), 3.76 (s, 3H, 4'-OCH₃), 3.73 (s, 6H, 3', 5'-OCH₃), 2.98-3.04 (m, 1H, H-3), 2.89-2.94 (m, 1H, H-2); ESI-MS m/z (%): 621 ([M+H]⁺, 100); HRMS-ESI: calcd for C₃₁H₂₉N₂O₁₂ ([M+H]⁺), 621.1715; found, 621.1711. *Compound* **8k**: 33% yield, white solid, mp 118–120 °C; $[\alpha]_{D}^{24} = -28.6$ (*c* 1.4 mg/mL, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ: 8.02-8.04 (m, 1H), 7.84 (d, J = 7.2 Hz, 1H), 7.54–7.71 (m, 6H), 6.92 (s, 1H, H-5), 6.56 (s, 1H, H-8), 6.47 (s, 2H, H-2', 6'), 6.16 (d, J = 8.0 Hz, 1H, H-4), 5.98 (d, J = 2.0 Hz, 2H, OCH₂O), 4.68-4.71 (m, 2H, H-1, H-11), 4.33-4.38 (m, 1H, H-11), 3.85 (s, 3H, CO₂CH₃), 3.87 (s, 3H, CO₂CH₃), 3.68 (s, 6H, 3', 5'-OCH₃), 2.99-3.02 (m, 2H, H-2, H-3); ESI-MS m/z (%): 742 ([M+NH₄]⁺, 100); HRMS-ESI: calcd for C₃₉H₃₆NO₁₄ ([M+NH₄]⁺), 742.2130; found, 742.2136. Compound 81: 49% yield, light yellow, mp 134- $135 \circ C_1 (a_1^{24} = -64.3 (c 2.8 mg/mL, CHC_3); ^{1}H NMR (400 MHz, CDCl_3) \delta: 8.56-8.58 (m, 1H), 8.39-8.42 (m, 2H), 8.30 (d, J = 7.6 Hz, 1H), 7.73 (t, J = 8.0 Hz, 2H),$ 6.85 (s, 1H, H-5), 6.60 (s, 1H, H-8), 6.50 (s, 2H, H-2', 6'), 6.16 (d, J = 9.2 Hz, 1H, H-4), 6.00–6.02 (m, 2H, OCH₂O), 4.70 (d, J = 4.4 Hz, 1H, H-1), 4.46–4.50 (m, 1H, H-11), 4.28-4.32 (m, 1H, H-11), 3.95 (s, 3H, CO2CH3), 3.88 (s, 3H, CO2CH3), 3.72 (s, 6H, 3', 5'-OCH₃), 2.93-3.06 (m, 2H, H-2, H-3); ESI-MS m/z (%): 832 ([M+NH₄]⁺, 100); HRMS-ESI: calcd for C₃₉H₃₄N₃O₁₈ ([M+NH₄]⁺), 832.1832; found. 832.1836