

DOI:10.1002/ejic.201300087

N-Heterocyclic Carbenes Functioning as Monoligating Clamps

ChemPubSoc Europe

Matthieu Teci,^[a] Eric Brenner,^{*[a]} Dominique Matt,^{*[a]} and Loïc Toupet^[b]

Keywords: Palladium / Carbene ligands / Conformation analysis / Cross-coupling

Benzimidazolium salts N,N'-disubstituted with 9-alkylfluorenyl groups (**3a–e**, alkyl = methyl, ethyl, propyl, butyl, benzyl) have been synthesised in high yields in three steps from *o*-phenylenediamine. This amine was treated with fluorenone in the presence of TiCl₄ and tetramethylethylenediamine (TMEDA) to form N,N'-bis(9*H*-fluoren-9-ylidene)benzene-1,2-diamine (**1**) in 91% yield. Diamines **2a–e** were then obtained in yields superior or equal to 77% by reacting diimine **1** with the appropriate organolithium reagent. In the final step, diamines **2a–e** were treated with ethylorthoformate under acidic conditions to afford benzimidazolium salts **3a–e**. These were readily converted into the PEPPSI palladium complexes **4a–e** (PEPPSI = pyridine-enhanced

Introduction

N-Heterocyclic carbenes (NHCs) have attracted considerable interest in transition-metal chemistry since the isolation of the first stable compound of this family in 1991^[1] and the discovery of the catalytic activity of their complexes.^[2–6] Palladium-mediated cross-coupling reactions are among the catalytic reactions for which NHCs have been successfully applied.^[3,7–13] In these transformations, electronic and steric ligand factors are crucial. Although their strong σ -donor properties make NHCs particularly efficient for promoting the oxidative addition step of the reaction, their steric encumbrance may facilitate the reductive elimination step as well as increase the stability of catalytic intermediates. As the carbenic centre of an NHC is part of a planar moiety, the steric properties of these ligands are mainly determined by the bulk of the *N*-substituents that

[a] Laboratoire de Chimie Inorganique Moléculaire et Catalyse, Institut de Chimie UMR 7177 CNRS, Université de Strasbourg, 67008 Strasbourg Cedex, France E-mail: eric.brenner@unistra.fr dmatt@chimie.u-strasbg.fr Homepage: http://inorganics.online.fr/
[b] Institut de Physique de Rennes UMR 6251CNRS, Université de Rennes 1, Campus de Beaulieu – Bâtiment 11 A,

- Campus de Beaulieu Bâtiment II A. 35042 Rennes Cedex, France
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic.201300087.

ONI INF LIBRARY

precatalyst preparation stabilisation and initiation). NMR and X-ray diffraction studies revealed that the flat fluorenylidene moiety orientates the alkyl groups towards the metal centre and because of its restricted rotational freedom makes the ligand bulkiness time independent. Thus, the metal centre is permanently confined between the two alkyl groups, and thereby forms a monoligating clamp with the carbenic centre. The CH₂ groups close to the palladium ion give rise to anagostic C-H···Pd interactions. Catalytic tests revealed that the palladium complexes 4a-e are highly efficient in Suzuki-Miyaura cross-coupling reactions; their activity is equal or superior to the best PEPPSI catalysts reported to date.

may form a pocket about the metal centre. These are remote from the heterocyclic moiety, and therefore any modification of the ligand encumbrance has essentially no significant effect on the electronic properties. Thus, steric finetuning of NHCs can be achieved straightforwardly without changing the ligand donor properties.

Many authors have attested to the pivotal role of steric parameters in Suzuki–Miyaura cross-coupling reactions.^[7,14,15] A general belief is that to be efficient, NHCs used in cross-coupling reactions must create strong hemispherical encumbrance about the catalytic centre.

It has also been widely contended that high catalytic activity requires that the sterically demanding N-substituents (typically o-substituted aryls^[8,16,17] or spiroalkyl groups^[7,18]) possess sufficient structural flexibility to adapt to the steric requirements of the individual steps of the whole catalytic cycle. In the present study, we describe highly active Suzuki-Miyaura catalysts based on NHCs, which unlike the usual expanded NHCs, generate only "planar" confinement in which encumbrance is created at two virtual, trans-located positions. These NHCs form complexes in which the metal centre is held within a clamp-like ligand characterised by its restricted conformational flexibility (Scheme 1). The new ligands, which were generated from benzimidazolium precursors, all have 9-alkylfluorenyl groups as N-substituents with such restricted rotational freedom that the steric congestion at the metal centre can undergo at most very minor fluctuations.

Scheme 1. Coordination of metal centres to clamp-like NHC ligands.

Results and Discussion

The alkylfluorenyl-substituted benzimidazolium salts 3ae were obtained in three steps according to Scheme 2. Their syntheses began with that of 1,^[19] which was obtained by condensation of 1,2-diaminobenzene with fluorenone in the presence of TiCl₄.

R = Me, Et, *n*Pr, *n*Bu, Bn

Scheme 2. Synthesis of benzimidazolium salts **3a–e**. Reagents and conditions: a) fluorenone, TiCl₄, tetramethylethylenediamine (TMEDA), toluene, reflux, 91%; b) RLi, tetrahydrofuran (THF), –78 °C to room temp., 77–85%; c) HC(OEt)₃, concd. HCl, 80 °C, 75–95%. Compound **1** has a *C*₂-symmetric structure.

Diimine 1 was then reacted with five different organolithium reagents RLi to afford the corresponding diamines 2a-e in high yields. We observed that the use of Grignard reagents instead of alkyllithium compounds resulted in significantly lower yields (< 50%), and the reactions led to azophilic addition products. In the final step, the amines were treated with ethylorthoformate under acidic conditions to result in the benzimidazolium chlorides 3a-e.^[20,21] In each of the corresponding ¹H NMR spectra, the C-2 proton of the imidazolium ring appears as a singlet at $\delta \approx$ 11.2 ppm. 2D ¹H NMR ROESY experiments established a strong proximity between this proton and the NCC H_2 atoms, but not with the aromatic H atoms of the benzimidazolium moiety, and this is indicative of the fluorenyl planes folding back towards the central phenylene ring (see Supporting Information). This structural feature was confirmed by an X-ray diffraction study carried out for 3b (Figure 1). Molecular modelling (Spartan)^[22] further revealed that the alkylfluorenyl groups cannot rotate about the N-Calkylfluorenyl bond owing to the expanded structure of the fluorenyl plane. Back-folding of the fluorenyl moieties was also found in diamine 2a in the solid state (see Supporting Information).

Figure 1. ORTEP representation of the benzimidazolium salt **3b**. The chloride counterion as well as the cocrystallising methanol molecule are not shown.

The benzimidazolium salts $3\mathbf{a}-\mathbf{e}$ were readily converted into the PEPPSI Pd complexes $4\mathbf{a}-\mathbf{e}$ by applying a standard procedure (Scheme 3, PEPPSI = pyridine-enhanced precatalyst preparation stabilisation and initiation).^[23] PEPPSI complexes are regarded as belonging to the most efficient cross-coupling catalysts.^[15,16,23-25]

Scheme 3. Synthesis of palladium complexes **4a-e** (conditions: PdCl₂, K₂CO₃, pyridine, 80 °C, 22-85%).

The ¹H NMR spectra of complexes 4a-e revealed the presence of a pyridine/NHC ratio of 1:1. The most remarkable feature of these spectra concerns the $NCCH_2$ signals, which are remarkably downfield shifted with respect to those of the corresponding diamines ($\Delta \delta = 2.26 - 3.38$ ppm). X-ray diffraction studies carried out for 4a-c (R = Me, Et, *n*Pr) revealed that in the solid state the methylenic NCC H_2 atoms are very close to the metal d_{z^2} orbital, and the carbenic plane bisects the two CH_2 groups. The methylenic CHatom is located only ca. 2.55 Å from the metal centre, and the NHC ligand can thus be viewed as a clamp that meridionally confines the metal centre (Figure 2). This feature is obviously imposed by the directional properties of the fluorenyl planes that push the two methylenic $NCCH_2$ groups towards the d_{z^2} orbital. As for **3a–e**, there is no indication of alkyfluorenyl moieties freely rotating about the corresponding N-C_{quat} bonds.^[26] Thus, to the best of our knowledge, among the bulky NHCs reported to date,^[27] the above ligands constitute the most confining NHCs with

time-independent crowding. The downfield shift observed for the NCCH₂ protons as well as the ¹J(¹³C, ¹H) values (ca. 130 Hz) are typically those of anagostic C–H···Pd bonds in which the bonding interactions display highly electrostatic character.^[28–30]

Figure 2. ORTEP representation of complex **4b**, which bears an NHC ligand that behaves as a clamp.

To assess their catalytic potential, complexes 4a-e were used in a Suzuki-Miyaura test reaction, namely that between *p*-tolyl chloride and phenylboronic acid. The catalytic runs were carried out in dioxane at 80 °C with 1 mol-% of catalyst precursor in the presence of 2 equiv. of Cs₂CO₃. All complexes were remarkably active (Table 1). Under the above conditions, the conversions ranged from 19 to 70%after 1 h, and the highest reaction rates were observed with 4b (R = Et). Interestingly, the activity of 4a (R = Me) was twice that of *t*Bu-substituted complex 5 (Figure 3), despite the fact that the corresponding NHCs have nearly the same buried volume [36.9% (4a); 36.6% (5)].^[31-33] This probably reflects the restricted rotational freedom of the N-substituents of 4a, which permanently holds the NCMe groups close to the metal centre and, therefore, increases the metal protection. In other terms, the time-averaged steric crowding about the metal centre is lower in 5, as the tBu groups freely rotate around the corresponding N– C_{quat} bonds. Clearly, these observations show that the buried-volume parameter, although it is useful in catalytic studies, does not take into account molecular dynamics that may result in a transient modification of the real bulk of a given ligand. The significant activity increase observed on going from 4a to the sterically more crowded complexes 4b and 4c is possibly due to a lowering of the activation barrier of the reductive elimination step. However, increasing the bulk of the R groups by using substituents larger than propyl (complexes 4d and 4e) led to somewhat lower activities; these groups probably restrict access of the substrate to the metal centre. We also found that the activity of clamp complex 4b surpasses that of complexes 6-8 (Figure 3), which contain the most efficient NHCs used in Suzuki-Miyaura crosscoupling reactions.^[8,9,11,15,17,23] Finally, preliminary tests showed that the above clamps can also efficiently be employed in more challenging cross-coupling reactions. For example, in the reaction of 2,6-dimethoxyphenylboronic acid with 4-chlorotoluene, 4b was twice as active as complex 6 (see Supporting Information).

Table 1. Suzuki–Miyaura cross-coupling of phenylboronic acid with *p*-tolyl chloride using **4–8**.

Figure 3. Palladium complexes with bulky NHC ligands used in cross-coupling reactions for comparison with **4a**–e.

In conclusion, we have shown that owing to its substituent-orienting properties, the 9-fluorenylidene moiety constitutes a valuable tool for the creation of NHC clamps with time-independent crowding. The palladium derivatives 4a– e, which contain such monoligating NHC ligands, were shown to display activities superior or equal to those obtained with the fastest Pd–NHC Suzuki–Miyaura crosscoupling catalysts reported to date. Overall, the above results suggest that "meridional confinement"^[34] may be an

interesting alternative to hemispherical encumbrance. Ligands of this type will be assessed in other catalytic reactions.

Experimental Section

General Procedures: All commercial reagents were used as supplied. The syntheses were performed in Schlenk-type flasks under dry nitrogen. Solvents were dried by conventional methods and distilled immediately prior to use. Routine ¹H and ¹³C{¹H} NMR spectra were recorded with an FT Bruker AVANCE 300 (1H: 300.1 MHz, ¹³C: 75.5 MHz) instrument at 25 °C. ¹H NMR spectroscopic data are referenced to residual protonated solvents (CHCl₃, $\delta = 7.26$; DMSO, $\delta = 2.50$ ppm), and ¹³C chemical shifts are reported relative to deuterated solvents (CDCl₃, δ = 77.16; [D₆]DMSO, δ = 39.52 ppm). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constant (J) in Hertz (Hz), integration and assignment. In the NMR spectroscopic data given hereafter, Cq denotes a quaternary carbon atom. Flash chromatography was performed as described by Still et al.^[35] by employing Geduran SI (E. Merck, 0.040-0.063 mm) silica. Routine TLC analyses were carried out by using plates coated with Merck Kieselgel 60 GF254. Mass spectra were recorded either with a Bruker MicroTOF spectrometer (ESI-TOF) with CH₂Cl₂ or CH₃CN as solvent or with a Bruker MaldiTOF spectrometer with dithranol as matrix. Elemental analyses were performed by the Service de Microanalyse, Institut de Chimie (CNRS), Strasbourg. Melting points were determined with a Büchi 535 capillary melting-point apparatus. Precursor salts of 5,^[20,36] 6,^[37,38] 7^[37,38] and 8^[37,38] were prepared by following procedures described in the literature.

N,N'-Bis(9H-fluoren-9-ylidene)benzene-1,2-diamine (1): A solution of ortho-phenylenediamine (2.160 g, 20 mmol), fluorenone (7.630 g, 42.3 mmol) and TMEDA (36 mL, 240 mmol) in toluene (200 mL) was heated at 80 °C. TiCl₄ (6.7 mL, 60 mmol) was then added dropwise over 20 min before the temperature was increased to 110 °C. After 5 h, the reaction mixture was cooled to room temperature and filtered through Celite to remove insoluble materials. These were washed with AcOEt (100 mL), and the filtrate was concentrated to dryness. The residue was dissolved in AcOEt (ca. 20 mL), and the resulting solution was passed through a short pad of silica gel and eluted with AcOEt until the product was completely recovered. The dark orange filtrate was concentrated to afford a red solid, which was purified by flash chromatography (SiO₂; CH₂Cl₂/ petroleum ether, 60:40). Diimine 1 was obtained as an orange solid (7.85 g, 91%); m.p. > 250 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.72 (d, ${}^{3}J$ = 7.5 Hz, 2 H, ArH), 7.50–7.41 (m, 4 H, ArH), 7.35– 7.10 (m, 12 H, ArH), 7.00 (ddd, ${}^{3}J = {}^{3}J' = 7.5$ Hz, ${}^{4}J = 0.9$ Hz, 2 H, ArH) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 162.9 (C=N), 143.6 (arom. Cq), 141.7 (arom. Cq), 140.9 (2×, arom. Cq), 137.6 (arom. Cq), 131.8 (arom. CH), 131.6 (arom. CH), 128.3 (arom. CH), 127.7 (arom. CH), 127.0 (arom. CH), 125.0 (arom. CH), 123.5 (arom. CH), 120.1 (arom. CH), 119.8 (arom. CH), 119.4 (arom. CH) ppm. The spectroscopic data are in full agreement with those of the literature.^[19]

N,*N*^{\prime}-**Bis(9-methyl-9***H***-fluoren-9-yl)benzene-1,2-diamine (2a):** To a stirred solution of diimine 1 (1.150 g, 2.67 mmol) in tetrahydrofuran (THF, 10 mL) cooled to -78 °C, was added dropwise MeLi (1.6 M in Et₂O, 4 mL, 6.40 mmol). The red solution quickly turned black. The reaction mixture was allowed to reach room temperature and was stirred for 30 min. After slow addition of water (30 mL), the mixture was extracted with AcOEt (3 × 40 mL), the combined organic layers were dried with Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (SiO₂; AcOEt/petroleum ether, 0.5:99.5) to afford **2a** as a pale brown solid (1.030 g, 83%); m.p. 178 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.51 (d, ³*J* = 7.1 Hz, 4 H, ArH), 7.41–7.35 (m, 8 H, ArH), 7.30–7.25 (m, 4 H, ArH), 6.10 (m, 2 H, ArH), 5.63 (m, 2 H, ArH), 4.38 (br. s, 2 H, NH), 1.76 (s, 6 H, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 150.0 (arom. Cq), 139.1 (arom. Cq), 135.8 (arom. Cq), 128.1 (arom. CH), 127.8 (arom. CH), 123.2 (arom. CH), 120.4 (arom. CH), 119.8 (arom. CH), 117.2 (arom. CH), 65.4 (*C*qCH₃), 30.8 (CH₃) ppm. C₃₄H₂₈N₂ (*M*_r = 464.60): calcd. C 87.90, H 6.07, N 6.03; found C 87.68, H 6.14, N 5.85.

N,N'-Bis(9-ethyl-9H-fluoren-9-yl)benzene-1,2-diamine (2b): A solution of ethyl bromide (1.850 g, 17 mmol) in pentane (15 mL) was added to a suspension of lithium powder (25 wt.-% in mineral oil, 0.940 g, 34 mmol) in pentane (15 mL) at a rate to maintain a steady reflux (about 1 h). The solution was maintained at reflux for 3 h and then allowed to reach room temperature. After decantation, the clear supernatant (25 mL, C $\approx 0.5 \text{ M}$,^[39] 12.5 mmol) was removed and added dropwise by syringe to a stirred solution of 1 (2.17 g, 5 mmol) in THF (17 mL) at -78 °C. The dark solution was then allowed to reach room temperature. The mixture was stirred for 1 h, water (40 mL) was slowly added, and the product was extracted with AcOEt (3×40 mL). The combined organic layers were dried with Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (SiO₂; AcOEt/petroleum ether, 0.5:99.5) to afford **2b** as a pale brown solid (2.010 g, 82%); m.p. 130 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.76 (d, ³J = 7.4 Hz, 4 H, ArH), 7.42–7.35 (m, 8 H, ArH), 7.31-7.26 (m, 4 H, ArH), 6.10-6.07 (m, 2 H, ArH), 5,66-5.63 (m, 2 H, ArH), 4.43 (br. s, 2 H, NH), 2.22 (q, ${}^{3}J$ = 7.4 Hz, 4 H, CH₂), 0.61 (t, ${}^{3}J$ = 7.4 Hz, 6 H, CH₃) ppm. ${}^{13}C{}^{1}H$ NMR $(CDCl_3, 75 \text{ MHz}): \delta = 148.3 \text{ (arom. Cq)}, 140.2 \text{ (arom. Cq)}, 135.8$ (arom. Cq), 128.1 (arom. CH), 127.6 (arom. CH), 123.5 (arom. CH), 120.2 (arom. CH), 119.6 (arom. CH), 117.0 (arom. CH), 69.0 (CqCH₂), 36.4 (CH₂), 8.4 (CH₃) ppm. C₃₆H₃₂N₂ (492.65): calcd. C 87.77, H 6.55, N 5.69; found C 87.63, H 6.56, N 5.49.

N,N'-Bis(9-propyl-9H-fluoren-9-yl)benzene-1,2-diamine (2c): Propyl bromide (0.516 g, 4.20 mmol) dissolved in pentane (7 mL) was added to a suspension of lithium powder (25 wt.-% in mineral oil, 0.234 g, 8.4 mmol) in pentane (7 mL) at a rate to maintain a steady reflux (about 1 h). The solution was maintained at reflux for 3 h. After decantation at room temperature, the clear supernatant (6.7 mL, $C \approx 0.5 \text{ M}$,^[6] 3.30 mmol) was removed and added dropwise by syringe to a stirred solution of 1 (0.562 g, 1.30 mmol) in THF (6 mL) at -78 °C under nitrogen. The dark solution was allowed to reach room temperature. The solution was stirred for a further 1 h, water (20 mL) was slowly added, and the reaction mixture was extracted with AcOEt (3×20 mL). The combined organic layers were dried with Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (SiO₂; AcOEt/petroleum ether, 0.5:99.5) to afford 2c as a pale brown solid (0.521 g, 77%); m.p. 80 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.77 (d, ³J = 7.4 Hz, 4 H, ArH), 7.43–7.37 (m, 8 H, ArH), 7.31-7.27 (m, 4 H, ArH), 6.12-6.09 (m, 2 H, ArH), 5.68-5.65 (m, 2 H, ArH), 4.44 (br. s, 2 H, NH), 2.18-2.13 (m, 4 H, CqCH₂), 1.01–0.90 (m, 4 H, CH₂CH₃), 0.86 (t, ${}^{3}J$ = 7.4 Hz, 6 H, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 148.7 (arom. Cq), 140.0 (arom. Cq), 135.8 (arom. Cq), 128.0 (arom. CH), 127.6 (arom. CH), 123.5 (arom. CH), 120.1 (arom. CH), 119.6 (arom. CH), 117.1 (arom. CH), 68.7 (CqCH₂), 45.8 (CqCH₂), 17.2

2844

 (CH_2CH_3) , 14.4 (CH₃) ppm. $C_{38}H_{36}N_2$ (520.71): calcd. C 87.65, H 2.9 6.97, N 5.38; found C 87.53, H 6.93, N 5.28. 145

N,N'-Bis(9-butyl-9H-fluoren-9-yl)benzene-1,2-diamine (2d): To a stirred solution of diimine 1 (1.020 g, 2.35 mmol) in THF (10 mL) cooled to -78 °C was added BuLi (1.6 M in hexanes, 4.4 mL, 7.04 mmol). The red solution quickly turned black. The reaction mixture was allowed to reach room temperature and was stirred for 30 min. Water (30 mL) was slowly added, the reaction mixture was extracted with AcOEt $(3 \times 40 \text{ mL})$, the combined organic layers were dried with Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (SiO₂; AcOEt/petroleum ether, 0.5:99.5) to afford 2d as a pale brown solid (1.010 g, 78%); m.p. 79 °C. ¹H NMR $(CDCl_3, 300 \text{ MHz}): \delta = 7.77 \text{ (d, } {}^{3}J = 7.4 \text{ Hz}, 4 \text{ H}, \text{ArH}), 7.43-7.36$ (m, 8 H, ArH), 7.32–7.27 (m, 4 H, ArH), 6.14–6.11 (m, 2 H, ArH), 5.67-5.66 (m, 2 H, ArH), 4.43 (br. s, 2 H, NH), 2.19-2.14 (m, 4 H, CqC H_2), 1.26 (tq, ${}^{3}J = {}^{3}J' = 7.3$ Hz, 4 H, C H_2 CH₃), 1.03–0.92 (m, 4 H, CqCH₂CH₂), 0.84 (t, ${}^{3}J$ = 7.3 Hz, 6 H, CH₃) ppm. ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 75 MHz): δ = 148.8 (arom. Cq), 140.1 (arom. Cq), 135.8 (arom. Cq), 128.0 (arom. CH), 127.6 (arom. CH), 123.5 (arom. CH), 120.2 (arom. CH), 119.6 (arom. CH), 117.2 (arom. CH), 68.6 (CqCH₂), 43.3 (CqCH₂), 26.0 (CqCH₂CH₂), 23.0 (CH₂CH₃), 14.1 (CH₃) ppm. C₄₀H₄₀N₂ (548.76): calcd. C 87.55, H 7.35, N 5.10; found C 87.21, H 7.39, N 5.39.

N,N'-Bis(9-benzyl-9H-fluoren-9-yl)benzene-1,2-diamine (2e): To a mixture of tBuOK (0.151 g, 1.34 mmol) and toluene (143 µL, 1.31 mmol) in THF (10 mL) cooled to -78 °C was added BuLi (1.6 M in hexanes, 760 µL, 1.22 mmol). The suspension quickly turned red and was kept at -78 °C for 20 min. Diimine 1 (0.200 g, 0.46 mmol) was then added portionwise, and the mixture quickly turned black. The reaction mixture was allowed to reach room temperature and was stirred for 30 min. Water (20 mL) was slowly added, and the reaction mixture was extracted with AcOEt (3 \times 20 mL). The combined organic layers were dried with Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (SiO₂; AcOEt/petroleum ether, 0.5:99.5) to afford **2e** as a pale brown solid (0.241 g, 85%); m.p. 103 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 7.64 (d, ³J = 7.5 Hz, 4 H, ArH), 7.39-7.33 (m, 4 H, ArH), 7.28 (m, 8 H, ArH), 7.23-7.14 (m, 6 H, ArH), 6.89 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{4}J$ = 1.5 Hz, 4 H, ArH), 6.04-6.00 (m, 2 H, ArH), 5.58-5.55 (m, 2 H, ArH), 4.68 (br. s, 2 H, NH), 3.42 (s, 4 H, CH₂) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 147.9 (arom. Cq), 139.9 (arom. Cq), 135.7 (arom. Cq), 135.5 (arom. Cq), 130.9 (arom. CH), 128.2 (arom. CH), 127.6 (arom. CH), 127.3 (arom. CH), 126.8 (arom. CH), 124.1 (arom. CH), 120.2 (arom. CH), 119.5 (arom. CH), 116.5 (arom. CH), 69.0 (CqCH₂), 50.1 (CH₂) ppm. C₄₆H₃₆N₂ (616.79): calcd. C 89.58, H 5.88, N 4.54; found C 89.09, H 6.10, N 4.52. Despite several recrystallisations the carbon content remained below the expected value.

1,3-Bis(9-methyl-9H-fluoren-9-yl)benzimidazolium Chloride (3a): Diamine **2a** (0.502 g, 1.08 mmol) was dissolved under magnetic stirring in HC(OEt)₃ (3 mL). HCl (12 M, 120 μ L, 1.40 mmol) was then added, and the mixture was heated at 80 °C for 15 h. The mixture was cooled to room temperature, and petroleum ether was added (ca. 20 mL). The precipitate was collected by filtration and washed with petroleum ether (3 × 15 mL). Compound **3a** (0.553 g, 86%) was obtained as a white solid; m.p. 210 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 11.24 (s, 1 H, NCHN), 7.89 (d, ³*J* = 7.5 Hz, 4 H, ArH), 7.85 (d, ³*J* = 7.5 Hz, 4 H, ArH), 7.50 (ddd, ³*J* = ³*J*' = 7.6 Hz, ⁴*J* = 0.9 Hz, 4 H, ArH), 7.35 (ddd, ³*J* = ³*J*' = 7.6 Hz, ⁴*J* = 0.9 Hz, 4 H, ArH), 6.82–6.78 (m, 2 H, ArH), 6.82–6.21 (m, 2 H, ArH), 2.96 (s, 6 H, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 145.1 (arom. Cq), 142.6 (NCHN), 139.0 (arom. Cq), 130.9 (arom. Cq), 130.3 (arom. CH), 129.4 (arom. CH), 126.3 (arom. CH), 124.9 (arom. CH), 120.8 (arom. CH), 114.8 (arom. CH), 71.4 (*C*qCH₃), 27.3 (CH₃) ppm. C₃₅H₂₇ClN₂·1.4H₂O (511.06 + 25.22): calcd. C 78.39, H 5.60, N 5.22; found C 78.61, H 5.55, N 4.98.

1,3-Bis(9-ethyl-9H-fluoren-9-yl)benzimidazolium Chloride (3b): Diamine 2b (0.400 g, 0.81 mmol) was dissolved under magnetic stirring in HC(OEt)₃ (3 mL). After the addition of HCl (12 M, 89 µL, 1.07 mmol), the mixture was heated at 80 °C for 15 h. The mixture was cooled to room temperature, petroleum ether was added (ca. 20 mL). The precipitate was collected by filtration and washed with petroleum ether $(3 \times 15 \text{ mL})$. Compound **3b** (0.414 g, 95%) was obtained as a white solid; m.p. 205 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 11.11 (s, 1 H, NCHN), 7.81 (d, ³J = 7.5 Hz, 4 H, ArH), 7.79 (d, ${}^{3}J$ = 7.5 Hz, 4 H, ArH), 7.48 (ddd, ${}^{3}J$ = ${}^{3}J'$ = 7.5 Hz, ${}^{4}J = 0.9$ Hz, 4 H, ArH), 7.34 (ddd, ${}^{3}J = {}^{3}J' = 7.5$ Hz, ${}^{4}J = 0.9$ Hz, 4 H, ArH), 6.76-6.73 (m, 2 H, ArH), 6.25-6.21 (m, 2 H, ArH), 3.68 (q, ${}^{3}J$ = 7.0 Hz, 4 H, CH₂), 0.51 (t, ${}^{3}J$ = 7.0 Hz, 6 H, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 143.2 (arom. Cq), 142.2 (NCHN), 140.6 (arom. Cq), 131.6 (arom. Cq), 130.4 (arom. CH), 129.6 (arom. CH), 126.3 (arom. CH), 125.1 (arom. CH), 120.6 (arom. CH), 115.0 (arom. CH), 75.4 (CqCH₂), 31.7 (CH₂), 7.6 (CH₃) ppm. C₃₇H₃₃ClN₂O (**3b**·H₂O, 557.13): calcd. C 79.77, H 5.97, N 5.03; found C 79.94, H 6.20, N 4.80.

1,3-Bis(9-propyl-9H-fluoren-9-yl)benzimidazolium Chloride (3c): Diamine 2c (0.422 g, 0.81 mmol) was dissolved under magnetic stirring in HC(OEt)₃ (3 mL). After the addition of HCl (12 M, 89 µL, 1.07 mmol), the mixture was heated at 80 °C for 15 h. The solution was cooled to room temperature, and petroleum ether was added (ca. 20 mL). The resulting precipitate was collected by filtration and washed with petroleum ether $(3 \times 15 \text{ mL})$. Compound 3c (0.358 g, 78%) was obtained as a white solid; m.p. 195 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 11.03 (s, 1 H, NCHN), 7.82 (d, ³J = 7.5 Hz, 4 H, ArH), 7.80 (d, ${}^{3}J$ = 7.5 Hz, 4 H, ArH), 7.47 (ddd, ${}^{3}J = {}^{3}J' = 7.5$ Hz, ${}^{4}J = 0.9$ Hz, 4 H, ArH), 7.34 (ddd, ${}^{3}J = {}^{3}J' =$ 7.5 Hz, ${}^{4}J = 0.9$ Hz, 4 H, ArH), 6.74–6.71 (m, 2 H, ArH), 6.23– 6.19 (m, 2 H, ArH), 3.62–3.57 (m, 4 H, CqCH₂), 0.92 (t, ${}^{3}J$ = 7.1 Hz, 6 H, CH₃), 0.85–0.72 (m, 4 H, CH₂CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 143.6 (arom. Cq), 141.9 (NCHN), 140.3 (arom. Cq), 131.0 (arom. Cq), 130.3 (arom. CH), 129.5 (arom. CH), 126.1 (arom. CH), 125.1 (arom. CH), 120.5 (arom. CH), 114.9 (arom. CH), 74.8 (CqCH₂), 39.9 (CqCH₂), 16.6 (*C*H₂CH₃), 14.1 (CH₃) ppm. C₃₉H₃₅ClN₂·0.7H₂O (567.16 + 12.61): calcd. C 80.79, H 6.33, N 4.83; found C 80.91, H 6.27, N 4.77.

1,3-Bis(9-butyl-9H-fluoren-9-yl)benzimidazolium Chloride (3d): Diamine 2d (0.912 g, 1.66 mmol) was dissolved under magnetic stirring in HC(OEt)₃ (5 mL). After the addition of HCl (12 M, 183 µL, 2.19 mmol), the mixture was heated at 80 °C for 15 h. The solution was then cooled to room temperature, and petroleum ether was added (ca. 20 mL). The precipitate was collected by filtration, washed with petroleum ether $(3 \times 15 \text{ mL})$ and dried in vacuo. Compound 3d (0.878 g, 89%) was obtained as a white solid; m.p. 170 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 11.10 (s, 1 H, NCHN), 7.83 (d, ${}^{3}J$ = 7.5 Hz, 4 H, ArH), 7.82 (d, ${}^{3}J$ = 7.5 Hz, 4 H, ArH), 7.49 (dd, ${}^{3}J = {}^{3}J' = 7.5$ Hz, 4 H, ArH), 7.35 (dd, ${}^{3}J = {}^{3}J' = 7.5$ Hz, 4 H, ArH), 6.75-6.70 (m, 2 H, ArH), 6.23-6.19 (m, 2 H, ArH), 3.67–3.62 (m, 4 H, CqC H_2), 1.40 (tq, ${}^{3}J = {}^{3}J' = 7.3$ Hz, 4 H, CH₂CH₃), 0.77–0.67 (m, 10 H, CqCH₂CH₂ and CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 143.7 (arom. Cq), 142.1 (NCHN), 140.4 (arom. Cq), 131.0 (arom. Cq), 130.3 (arom. CH), 129.5 (arom. CH), 126.1 (arom. CH), 125.1 (arom. CH), 120.5

2845

(arom. CH), 114.9 (arom. CH), 74.8 ($CqCH_2$), 37.7 ($CqCH_2$), 25.34 ($CqCH_2CH_2$), 22.59 (CH_2CH_3), 14.28 (CH₃) ppm. C₄₁H₃₉ClN₂·0.8H₂O (595.21 + 14.41): calcd. C 80.78, H 6.71, N 4.60; found C 80.59, H 6.62, N 4.71.

1,3-Bis(9-benzyl-9H-fluoren-9-yl)benzimidazolium Chloride (3e): Diamine 2e (0.450 g, 0.73 mmol) was dissolved under magnetic stirring in HC(OEt)₃ (3 mL) and then HCl 12 M (81 µL, 0.97 mmol) was added. The mixture was heated at 80 °C for 15 h. The solution was cooled to room temperature, petroleum ether was added (ca. 20 mL), and the resulting precipitate was collected by filtration and washed with petroleum ether $(3 \times 15 \text{ mL})$. Compound **3e** (0.362 g, 75%) was obtained as a white solid; m.p. 225 °C. ¹H NMR (CDCl₃, 300 MHz): $\delta = 11.49$ (s, 1 H, NCHN), 8.01–8.07 (m, 4 H, ArH), 7.52–7.50 (m, 4 H, ArH), 7.42–7.35 (m, 8 H, ArH), 6.93 (t, ${}^{3}J$ = 7.5 Hz, 2 H, ArH), 6.83–6.76 (m, 6 H, ArH), 6.61 (d, ${}^{3}J$ = 7.5 Hz, 4 H, ArH), 6.25-6.22 (m, 2 H, ArH), 5.06 (s, 4 H, CH₂) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 143.9 (arom. Cq), 142.9 (NCHN), 142.2 (arom. Cq), 132.0 (arom. Cq), 131.1 (arom. Cq), 131.0 (arom. CH), 130.3 (arom. CH), 128.9 (arom. CH), 127.0 (arom. CH), 126.6 (arom. CH), 126.3 (arom. CH), 125.6 (arom. CH), 120.4 (arom. CH), 115.2 (arom. CH), 75.1 (CqCH₂), 44.2 (CH₂) ppm. C₄₇H₃₉ClN₂O (3e·2H₂O, 699.28): calcd. C 80.73, H 5.62, N 4.01; found C 80.43, H 5.34, N 4.11.

trans-[1,3-Bis(9-methyl-9H-fluoren-9-yl)benzimidazol-2-ylidene]-(pyridine)palladium(II) Dichloride (4a): Nitrogen was passed (2 min) through a suspension of benzimidazolium salt **3a** (0.260 g, 0.51 mmol), K₂CO₃ (0.356 g, 2.58 mmol) and PdCl₂ (0.110 g, 0.62 mmol) in pyridine (3 mL). The suspension was then heated at 80 °C for 15 h under vigorous stirring. The mixture was cooled to room temperature, the mixture was filtered through Celite, and the solid was washed with CH₂Cl₂ (ca. 20 mL). The solvent was removed in vacuo, and the residue was purified by flash chromatography (SiO₂; CH₂Cl₂/petroleum ether, 50:50) to afford 4a as a yellow solid (0.316 g, 85%); m.p. > 240 °C. ¹H NMR (CDCl₃, 300 MHz): $\delta = 9.19-9.12$ (m, 2 H, o-NC₅ H_5), 7.85–7.78 (m, 9 H, 8H ArH and 1 H, p-NC₅H₅), 7.47-7.37 (m, 6 H, 4H ArH and 2H m-NC₅ H_5), 7.29 (dd, ${}^{3}J = {}^{3}J' = 7.5$ Hz, 4 H, ArH), 6.40–6.37 (m, 2 H, ArH), 6.08-6.05 (m, 2 H, ArH), 4.02 (s, 6 H, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 161.5 (NCN), 151.8 (arom. CH), 149.2 (arom. Cq), 138.4 (arom. Cq), 138.2 (arom. CH), 134.4 (arom. Cq), 129.1 (2×, arom. CH), 124.9 (arom. CH), 124.7 (arom. CH), 122.5 (arom. CH), 120.7 (arom. CH), 113.1 (arom. CH), 72.2 $(CqCH_3)$, 33.8 (CH₃) ppm. $C_{40}H_{31}Cl_2N_3Pd \cdot 0.2CH_2Cl_2$ (731.02 + 16.99): calcd. C 64.55, H 4.23, N 5.62; found C 64.39, H 4.31, N 5.56

trans-[1,3-Bis(9-ethyl-9H-fluoren-9-yl)benzimidazol-2-ylidene]-(pyridine)palladium(II) Dichloride (4b): Nitrogen was passed (2 min) through a stirred suspension of benzimidazolium salt 3b (0.103 g, 0.19 mmol), K₂CO₃ (0.132 g, 0.96 mmol) and PdCl₂ (0.041 g, 0.23 mmol) in pyridine (2.5 mL). The suspension was then heated at 80 °C for 15 h under vigorous stirring. The solution was cooled to room temperature, the mixture was filtered through Celite, and the solid was washed with CH₂Cl₂ (ca. 20 mL). The filtrate was concentrated under vacuum and purified by flash chromatography (SiO₂; CH₂Cl₂/petroleum ether, 50:50) to afford 4b as a yellow solid (0.113 g, 78%); m.p. > 240 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 9.13-9.10 (m, 2 H, o-NC5H5), 7.84-7.76 (m, 5 H, 4H ArH and 1 H, *p*-NC₅*H*₅), 7.72 (d, ${}^{3}J$ = 7.5 Hz, 4 H, ArH), 7.45–7.35 (m, 6 H, 4H ArH and 2H *m*-NC₅*H*₅), 7.28 (ddd, ${}^{3}J = {}^{3}J' = 7.5$ Hz, ${}^{4}J =$ 0.9 Hz, 4 H, ArH), 6.37-6.34 (m, 2 H, ArH), 6.18-6.15 (m, 2 H, ArH), 5.45 (q, ${}^{3}J$ = 7.3 Hz, 4 H, CH₂), 0.42 (t, ${}^{3}J$ = 7.3 Hz, 6 H, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 160.4 (NCN), 151.8 (arom. CH), 146.4 (arom. Cq), 140.3 (arom. Cq), 138.2 (arom. CH), 134.6 (arom. Cq), 129.1 ($2 \times$, arom. CH), 125.0 (arom. CH), 124.8 (arom. CH), 122.1 (arom. CH), 120.0 (arom. CH), 113.5 (arom. CH), 76.7 ($CqCH_2$), 36.8 (CH₂), 8.7 (CH₃) ppm. C₄₂H₃₅Cl₂N₃Pd (759.07): calcd. C 66.46, H 4.65, N 5.54; found C 66.73, H 4.99, N 5.16.

trans-[1,3-Bis(9-propyl-9H-fluoren-9-yl)benzimidazol-2-ylidene]-(pyridine)palladium(II) Dichloride (4c): Nitrogen was passed (2 min) through a suspension of benzimidazolium salt 3c (0.352 g, 0.62 mmol), K₂CO₃ (0.427 g, 3.09 mmol) and PdCl₂ (0.132 g, 0.74 mmol) in pyridine (3 mL). The suspension was then heated at 80 °C for 24 h under vigorous stirring. The solution was cooled to room temperature, the mixture was filtered through Celite, and the solid was washed with CH₂Cl₂ (ca. 20 mL). The solvent was removed in vacuo, and the residue was purified by flash chromatography (SiO₂; CH₂Cl₂/petroleum ether, 50:50) to afford 4c as a yellow solid (0.108 g, 22%); m.p. > 240 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 9.16–9.14 (m, 2 H, *o*-NC₅H₅), 7.87–7.72 (m, 9 H, 8H ArH and 1 H, p-NC₅H₅), 7.43–7.38 (m, 6 H, 4H ArH and 2H m-NC5H5), 7.30-7.26 (m, 4 H, ArH), 6.35-6.32 (m, 2 H, ArH), 6.15-6.11 (m, 2 H, ArH), 5.46-5.41 (m, 4 H, CqCH₂), 0.92 (t, ³J = 7.2 Hz, 6 H, CH₃), 0.62 (tq, ${}^{3}J = {}^{3}J' = 7.2$ Hz, 4 H, CH₂CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 160.7 (NCN), 151.9 (arom. CH), 147.0 (arom. Cq), 140.0 (arom. Cq), 138.2 (arom. CH), 134.5 (arom. Cq), 129.1 (arom. CH), 129.1 (arom. CH), 124.9 (arom. CH), 124.8 (arom. CH), 122.4 (arom. CH), 120.0 (arom. CH), 113.4 (arom. CH), 76.0 (CqCH₂), 46.0 (CqCH₂), 17.6 (CH₂CH₃), 14.5 (CH₃) ppm. C₄₄H₃₉Cl₂N₃Pd·0.2CH₂Cl₂ (787.13 + 16.99): calcd. C 66.02, H 4.94, N 5.23; found C 66.06, H 4.96, N 5.14.

trans-[1,3-Bis(9-butyl-9H-fluoren-9-yl)benzimidazol-2-ylidene]-(pyridine)palladium(II) Dichloride (4d): Nitrogen was passed (2 min) through a suspension of benzimidazolium salt 3d (0.503 g, 0.84 mmol), K₂CO₃ (0.590 g, 4.27 mmol) and PdCl₂ (0.179 g, 1.01 mmol) in pyridine (3 mL). The mixture was then heated at 80 °C for 15 h under vigorous stirring. The mixture was cooled to room temperature and filtered through Celite, and the filtered solid was washed with CH₂Cl₂ (ca. 20 mL). The solvent was removed in vacuo, and the residue was purified by flash chromatography (SiO₂; CH₂Cl₂/petroleum ether, 50:50) to afford 4d as a yellow solid (0.279 g, 41%); m.p. > 240 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 9.19-9.17 (m, 2 H, o-NC5H5), 7.83-7.72 (m, 9 H, 8H ArH and 1 H, *p*-NC₅*H*₅), 7.43–7.38 (m, 6 H, 4H ArH and 2H *m*-NC₅*H*₅), 7.30-7.25 (m, 4 H, ArH), 6.34-6.31 (m, 2 H, ArH), 6.15-6.11 (m, 2 H, ArH), 5.47–5.41 (m, 4 H, CqC H_2), 1.34 (tq, ${}^{3}J = {}^{3}J' = 7.3$ Hz, 4 H, CH₂CH₃), 0.69 (t, ${}^{3}J$ = 7.3 Hz, 6 H, CH₃), 0.55 (tt, ${}^{3}J$ = ${}^{3}J'$ = 7.3 Hz, 4 H, CqCH₂CH₂) ppm. ${}^{13}C{}^{1}H$ NMR (CDCl₃, 75 MHz): δ = 160.5 (NCN), 151.9 (arom. CH), 147.0 (arom. Cq), 140.1 (arom. Cq), 138.2 (arom. CH), 134.6 (arom. Cq), 129.1 (arom. CH), 129.0 (arom. CH), 124.9 (arom. CH), 124.7 (arom. CH), 122.3 (arom. CH), 120.0 (arom. CH), 113.4 (arom. CH), 76.1 (CqCH₂), 43.6 (CqCH₂), 26.1 (CqCH₂CH₂), 23.0 (CH₂CH₃), 14.1 (CH₃) ppm. $C_{46}H_{43}Cl_2N_3Pd \cdot 0.1CH_2Cl_2$ (815.18 + 8.49): calcd. C 67.22, H 5.29, N 5.10; found C 67.37, H 5.39, N 4.99.

trans-[1,3-Bis(9-benzyl-9*H*-fluoren-9-yl)benzimidazol-2-ylidene]-(pyridine)palladium(II) Dichloride (4e): Nitrogen was passed (2 min) through a suspension of benzimidazolium salt 3e (0.200 g, 0.30 mmol), K_2CO_3 (0.207 g, 1.5 mmol) and PdCl₂ (0.065 g, 0.36 mmol) in pyridine (3 mL). The suspension was then heated at 80 °C for 15 h under vigorous stirring. The mixture was cooled to room temperature and filtered through Celite, and the filtered solid was washed with CH₂Cl₂ (ca. 20 mL). The solvent was removed in

vacuo, and the residue was purified by flash chromatography (SiO₂; CH_2Cl_2 /petroleum ether, 50:50) to afford 4e as a yellow solid $(0.177 \text{ g}, 67\%); \text{ m.p.} > 240 \text{ °C. }^{1}\text{H NMR} (\text{CDCl}_{3}, 300 \text{ MHz}): \delta =$ 9.01-8.98 (m, 2 H, o-NC5H5), 8.02-7.97 (m, 4 H, ArH), 7.66 (tt, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.7$ Hz, 1 H, *p*-NC₅*H*₅), 7.44–7.22 (m, 14 H, 12H ArH and 2H *m*-NC₅*H*₅), 6.94 (tt, ${}^{3}J$ = 7.4 Hz, ${}^{4}J$ = 1.1 Hz, 2 H, ArH), 6.83–6.74 (m, 8 H, 4H ArH and 4H CH₂), 6.41 (d, ${}^{3}J$ = 7.4 Hz, 4 H, ArH), 6.38–6.35 (m, 2 H, ArH), 6.16–6.12 (m, 2 H, ArH) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 161.3 (NCN), 151.6 (arom. CH), 146.2 (arom. Cq), 140.1 (arom. Cq), 138.0 (arom. CH), 134.6 (arom. Cq), 134.5 (arom. Cq), 131.2 (arom. CH) 129.2 (arom. CH), 128.6 (arom. CH), 126.6 (arom. CH), 125.9 (arom. CH), 125.4 (arom. CH), 125.0 (arom. CH) 122.5 (arom. CH), 119.9 (arom. CH), 113.8 (arom. CH), 76.3 (CqCH₂), 50.0 (Cq*C*H₂) ppm. C₅₂H₃₉Cl₂N₃Pd (883.21): calcd. C 70.71, H 4.45, N 4.76; found C 70.72, H 4.56, N 4.82.

trans-[1,3-Bis(tert-butyl)benzimidazol-2-ylidene](pyridine)palladium(II) Dichloride (5): Nitrogen was passed (2 min) through a suspension of 1,3-bis(tert-butyl)benzimidazolium chloride (0.630 g, 2.36 mmol), K₂CO₃ (1.63 g, 11.8 mmol) and PdCl₂ (0.415 g, 2.34 mmol) in pyridine (5 mL). The suspension was then heated at 80 °C for 15 h under vigorous stirring. The mixture was cooled to room temperature and filtered through Celite, and the filtered solid was washed with CH₂Cl₂ (ca. 20 mL). The combined washings and the filtrate were evaporated to dryness. The residue was then purified by flash chromatography (SiO₂; CH₂Cl₂/petroleum ether, 50:50) to afford **5** as a yellow solid (0.921 g, 80%); m.p. 229 °C. ¹H NMR (CDCl₃, 300 MHz): $\delta = 9.03-8.98$ (m, 2 H, o-NC₅ H_5), 7.83-7.79 (m, 2 H, ArH), 7.78 (tt, ${}^{3}J = 7.6$ Hz, ${}^{4}J = 1.6$ Hz, 1 H, p-NC₅H₅), 7.38–7.33 (m, 2 H, m-NC₅H₅), 7.24–7.18 (m, 2H ArH), 2.52 (s, 18 H, CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 157.2 (NCN), 151.6 (arom. CH), 137.9 (arom. CH), 135.1 (arom. Cq), 124.7 (arom. CH), 121.6 (arom. CH), 115.3 (arom. CH), 61.3 (CqCH₃), 31.9 (CH₃) ppm. C₂₀H₂₇Cl₂N₃Pd (486.77): calcd. C 49.35, H 5.59, N 8.63; found C 48.81, H 5.64, N 8.43.

trans-[1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-ylidene](pyridine)palladium(II) Dichloride (6): Nitrogen was passed (2 min) through a suspension of bis(2,4,6-trimethylphenyl)imidazolium chloride (0.511 g, 1.50 mmol), K₂CO₃ (1.04 g, 7.50 mmol) and PdCl₂ (0.320 g, 1.80 mmol) in pyridine (5 mL). The suspension was then heated at 80 °C for 15 h under vigorous stirring. The mixture was cooled to room temperature and filtered through Celite, and the collected solid washed with CH₂Cl₂ (ca. 20 mL). The filtrate was evaporated to dryness, and the resulting residue was purified by flash chromatography (SiO₂; CH₂Cl₂/petroleum ether, 50:50) to afford **6** as a yellow solid (0.689 g, 82%); m.p. > 240 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.54–8.48 (m, 2 H, *o*-NC₅H₅), 7.54 (tt, ³J = 7.6 Hz, ${}^{4}J$ = 1.5 Hz, 1 H, p-NC₅H₅), 7.12–7.07 (m, 2 H, m-NC5H5), 7.06 (s, 2 H, ArH), 7.05 (s, 4 H, ArH), 2.37 (s, 6 H, p-CH₃), 2.36 (s, 12 H, o-CH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 152.9 (NCN), 151.6 (arom. CH), 139.2 (arom. Cq), 137.5 (arom. CH), 136.4 (arom. Cq), 135.2 (arom. Cq), 129.3 (arom. CH), 124.2 (arom. CH), 124.0 (arom. CH), 21.3 (p-CH₃) 19.2 (o-CH₃) ppm. C₂₆H₂₉Cl₂N₃Pd (560.85): calcd. C 55.68, H 5.21, N 7.49.f; found C 55.68, H 5.51, N 7.23.

trans-[1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene](pyridine)palladium(II) Dichloride (7): Nitrogen was passed (2 min) through a suspension of bis(2,6-diisopropylphenyl)imidazolium chloride (0.301 g, 0.71 mmol), K_2CO_3 (0.493 g, 3.55 mmol) and PdCl₂ (0.151 g, 0.85 mmol) in pyridine (5 mL). The suspension was then heated at 80 °C for 15 h under vigorous stirring. The mixture was cooled to room temperature and filtered through Celite, and the

collected solid was washed with CH2Cl2 (ca. 20 mL). The filtrate and the washings were evaporated to dryness, and the resulting residue was purified by flash chromatography (SiO₂; CH₂Cl₂/petroleum ether, 50:50) to afford 7 as a yellow solid (0.322 g, 70%); m.p. 235 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.58–8.51 (m, 2 H, o-NC₅H₅), 7.57–7.44 (m, 3 H, 2H ArH and 1 H, p-NC₅H₅), 7.35 (d, ${}^{3}J$ = 7.6 Hz, 4 H, ArH), 7.14–7.05 (m, 4 H, 2H ArH and 2 H, m-NC₅*H*₅), 3.18 (qq, ${}^{3}J = {}^{3}J' = 6.7$ Hz, 4 H, CHMe₂), 1.49 (d, ${}^{3}J =$ 6.7 Hz, 12 H, CHC H_3), 1.12 (d, ${}^{3}J$ = 6.7 Hz, 12 H, CHC H_3) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 155.0 (NCN), 151.5 (arom. CH), 146.7 (arom. Cq), 137.5 (arom. CH), 135.2 (arom. Cq), 130.3 (arom. CH), 125.1 (arom. CH), 124.1 (2×, arom. CH), 28.8 (CHMe₂) 26.4 (CH₃) 23.4 (CH₃) ppm. C₃₂H₄₁Cl₂N₃Pd (645.01): calcd. C 59.59, H 6.41, N 6.51; found C 59.53, H 6.63, N 6.29. The spectroscopic data are in full agreement with those of the literature.[15]

trans-[1,3-Bis(2,6-diisopropylphenyl)imidazolin-2-ylidenel(pyridine)palladium(II) Dichloride (8): Nitrogen was passed (2 min) through a suspension of bis(2,6-diisopropylphenyl)imidazolinium chloride (0.303 g, 0.71 mmol), K2CO3 (0.496 g, 3.55 mmol) and PdCl₂ (0.152 g, 0.85 mmol) in pyridine (5 mL). The suspension was then heated at 80 °C for 15 h under vigorous stirring. The mixture was cooled to room temperature and filtered through Celite, and the collected solid washed with CH_2Cl_2 (ca. 20 mL). The filtrate was evaporated to dryness, and the resulting residue was purified by flash chromatography (SiO₂; CH₂Cl₂/petroleum ether, 50:50) to afford 8 as a yellow solid (270 mg, 58%); m.p. 227 °C. ¹H NMR (CDCl₃, 300 MHz): δ = 8.54–8.47 (m, 2 H, *o*-NC₅H₅), 7.52 (tt, ³J = 7.6 Hz, ${}^{4}J$ = 1.6 Hz, 1 H, *p*-NC₅H₅), 7.44–7.37 (m, 2 H, ArH), 7.32-7.27 (m, 4 H, ArH), 7.10-7.04 (m, 2 H, m-NC5H5), 4.06 (s, 4 H, CH₂), 3.60 (qq, ${}^{3}J = {}^{3}J' = 6.7$ Hz, 4 H, CHMe₂), 1.57 (d, ${}^{3}J =$ 6.7 Hz, 12 H, CHCH₃), 1.27 (d, ${}^{3}J$ = 6.7 Hz, 12 H, CHCH₃) ppm. ¹³C{¹H} NMR (CDCl₃, 75 MHz): δ = 186.2 (NCN), 151.3 (arom. CH), 147.6 (arom. Cq), 137.4 (arom. CH), 135.5 (arom. Cq), 129.5 (arom. CH), 125.5 (arom. CH), 124.0 (arom. CH), 58.9 (CH₂), 28.8 (CHMe₂) 26.9 (CH₃) 24.3 (CH₃) ppm. C₃₂H₄₃Cl₂N₃Pd (647,03): calcd. C 59.40, H 6.70, N 6.49; found C 59.15, H 6.98, N 6.01.

General Procedure for Palladium-Catalysed Suzuki-Miyaura Cross-Coupling Reactions: A mixture of the palladium complex (0.01 mmol), phenylboronic acid (0.183 g, 1.50 mmol) and base (2 mmol) was suspended in an appropriate solvent (3 mL). After the addition of p-tolyl chloride (0.126 g, 1 mmol), the mixture was vigorously stirred at 80 °C for a given period of time. The hot mixture was filtered through Celite. 1,4-Dimethoxybenzene (0.069 g, 0.5 mmol; internal standard) was then added to the filtrate. The solvent was removed under reduced pressure, and the crude mixture was analysed by ¹H NMR spectroscopy. The yields were determined by comparing the intensity of the methyl signal of the product [δ (Me) = 2.41 ppm] with that of the internal reference [δ (Me) = 3.78 ppm]. In some experiments the product was isolated chromatographically. The isolated yield turned out to be very close (deviation less than 5%) to that determined by using the internal reference.

Crystal Data for Benzimidazolium Salt 3b·MeOH: Crystals suitable for X-ray diffraction were obtained by slow evaporation of a deuterated chloroform solution of the complex: $C_{38}H_{35}ClN_2O$, M =571.13, monoclinic, space group $P2_1/c$, a = 13.2006(3), b =16.0741(4), c = 14.5915(4) Å, $\beta = 102.141(3)$, V = 3026.89(13) Å³, Z = 4, $\mu = 0.160$ mm⁻¹, F(000) = 1208. Crystals of the compound were mounted on an Oxford Diffraction CCD Sapphire 3 Xcalibur diffractometer. Data collection with Mo- K_a radiation ($\lambda =$ 0.71073 Å) was carried out at 140 K. 23233 reflections were col-

2847

lected (2.66 < θ < 27.00°), 6590 were found to be unique and 3594 were observed (merging R = 0.0549). The structure was solved with SHELXS-97.^[40] Final results: R_2 , R_1 , wR_2 , wR_1 , Goof; 0.0957, 0.0394, 0.0889, 0.0811, 0.819. Residual electron density minimum/ maximum: -0.237/0.254 eÅ⁻³.

Crystal Data for Complex 4b: Crystals suitable for X-ray diffraction were obtained by slow diffusion of THF into a deuterated chloroform solution of the complex: $C_{42}H_{35}Cl_2N_3Pd$, M = 759.03, monoclinic, space group $P2_1/n$, a = 11.27110(10), b = 22.3694(3), c = 17.3400(2) Å, $\beta = 93.3090(10)$, V = 4364.61(9) Å³, Z = 4, $\mu = 0.576$ mm⁻¹, F(000) = 1552. Crystals of the compound were mounted on an Oxford Diffraction CCD Sapphire 3 Xcalibur diffractometer. Data collection with Mo- K_a radiation ($\lambda = 0.71073$ Å) was carried out at 150 K. 61105 reflections were collected (2.78 $\leq \theta < 27.00^{\circ}$), 9522 were found to be unique and 6814 were observed (merging R = 0.0462). The structure was solved with SHELXS-97.^[40] Final results: R_2 , R_1 , wR_2 , wR_1 , Goof; 0.0579, 0.0341, 0.1380, 0.1203, 0.559. Residual electron density minimum/maximum: -0.324/0.365 eÅ⁻³.

CCDC-811568 (for **3b**·MeOH) and -811477 (for **4b**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Supporting Information (see footnote on the first page of this article): 2D $^{1}H^{-1}H$ ROESY NMR spectra for 3a and 4b, base and solvent screening for 4-methylbiphenyl synthesis with palladium complex 4b, general procedure for the cross-coupling of (2,6-dimethoxyphenyl)boronic acid with 4-chlorotoluene, ORTEP representation of the molecular structure of 2a and the crystal data for 2a.

Acknowledgments

This work was supported by the Ministère de l'Enseignement Supérieur et de la Recherche (grant to M. T.).

- [1] A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361.
- [2] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, *Org. Lett.* **1999**, *1*, 953.
- [3] A. F. Littke, G. C. Fu, Angew. Chem. 2002, 114, 4350; Angew. Chem. Int. Ed. 2002, 41, 4176.
- [4] W. A. Herrmann, Angew. Chem. 2002, 114, 1342; Angew. Chem. Int. Ed. 2002, 41, 1290.
- [5] V. César, S. Bellemin-Laponnaz, L. H. Gade, *Chem. Soc. Rev.* 2004, 33, 619.
- [6] S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612.
- [7] G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, J. Am. Chem. Soc. 2004, 126, 15195.
- [8] N. Marion, O. Navarro, J. G. Mei, E. D. Stevens, N. M. Scott, S. P. Nolan, J. Am. Chem. Soc. 2006, 128, 4101.
- [9] E. A. B. Kantchev, C. J. O'Brien, M. G. Organ, Angew. Chem. 2007, 119, 2824; Angew. Chem. Int. Ed. 2007, 46, 2768.
- [10] S. Dastgir, K. S. Coleman, A. R. Cowley, M. L. H. Green, Organometallics 2010, 29, 4858.

- [11] O. Diebolt, V. Jurcik, R. C. da Costa, P. Braunstein, L. Cavallo, S. P. Nolan, A. M. Z. Slawin, C. S. J. Cazin, *Organometallics* 2010, 29, 1443.
- [12] E. Brenner, D. Matt, M. Henrion, M. Teci, L. Toupet, *Dalton Trans.* 2011, 40, 9889.
- [13] C. Valente, S. Çalimsiz, K. H. Hoi, D. Mallik, M. Sayah, M. G. Organ, Angew. Chem. 2012, 124, 3370; Angew. Chem. Int. Ed. 2012, 51, 3314.
- [14] G. A. Grasa, M. S. Viciu, J. K. Huang, C. M. Zhang, M. L. Trudell, S. P. Nolan, *Organometallics* 2002, 21, 2866.
- [15] J. Nasielski, N. Hadei, G. Achonduh, E. A. B. Kantchev, C. J. O'Brien, A. Lough, M. G. Organ, *Chem. Eur. J.* **2010**, *16*, 10844.
- [16] M. G. Organ, S. Çalimsiz, M. Sayah, K. H. Hoi, A. J. Lough, Angew. Chem. 2009, 121, 2419; Angew. Chem. Int. Ed. 2009, 48, 2383.
- [17] M. T. Chen, D. A. Vicic, M. L. Turner, O. Navarro, *Organome-tallics* 2011, 30, 5052.
- [18] G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, Angew. Chem. 2003, 115, 3818; Angew. Chem. Int. Ed. 2003, 42, 3690.
- [19] N. M. Glagovich, E. M. Reed, G. Crundwell, J. B. Updegraff III, M. Zeller, A. D. Hunter, *Acta Crystallogr., Sect. E: Struct. Rep. Online* 2005, *61*, o1251.
- [20] N. Hadei, E. A. B. Kantchev, C. J. O'Brien, M. G. Organ, Org. Lett. 2005, 7, 1991.
- [21] A. R. Chianese, A. Mo, D. Datta, *Organometallics* **2009**, *28*, 465.
- [22] Spartan 10, v. 1.1.0, Wavefunction, Inc., 2011.
- [23] C. J. O'Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ, *Chem. Eur. J.* 2006, *12*, 4743.
- [24] M. G. Organ, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O'Brien, C. Valente, *Chem. Eur. J.* 2006, 12, 4749.
- [25] M. G. Organ, M. Abdel-Hadi, S. Avola, N. Hadei, J. Nasielski, C. J. O'Brien, C. Valente, *Chem. Eur. J.* **2007**, *13*, 150.
- [26] 2D NMR experiments established strong correlations between the NCCH₂ signals and those of the pyridinic *ortho*-H atoms, but not between the NCCH₂ signals and those of the central phenylene ring (see Supporting Information).
- [27] A. A. Grishina, S. M. Polyakova, R. A. Kunetskiy, I. Císarová, I. M. Lyapkalo, *Chem. Eur. J.* 2011, 17, 96.
- [28] H. V. Huynh, Y. Han, J. H. H. Ho, G. K. Tan, Organometallics 2006, 25, 3267.
- [29] Y. Han, H. V. Huynh, L. L. Koh, J. Organomet. Chem. 2007, 692, 3606.
- [30] P. S. Pregosin, in: NMR in Organometallic Chemistry, Wiley-VCH, Weinheim, Germany, 2010.
- [31] N. M. Scott, S. P. Nolan, Eur. J. Inorg. Chem. 2005, 1815.
- [32] A. Poater, B. Cosenza, A. Correa, S. Giudice, F. Ragone, V. Scarano, L. Cavallo, *Eur. J. Inorg. Chem.* 2009, 1759.
- [33] H. Clavier, S. P. Nolan, Chem. Commun. 2010, 46, 841.
- [34] The term meridional confinement refers to a "three-point" interaction involving three groups belonging to the same meridian, regardless of the metal-ion stereochemistry.
- [35] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
- [36] D. M. Khramov, C. W. Bielawski, J. Org. Chem. 2007, 72, 9407.
- [37] A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich, W. J. Marshall, M. Unverzagt, *Tetrahedron* 1999, 55, 14523.
- [38] L. Hintermann, Beilstein J. Org. Chem. 2007, 3-22.
- [39] J. Suffert, J. Org. Chem. 1989, 54, 509.
- [40] G. M. Sheldrick, SHELX-97, Program for the refinement of crystal structures, University of Göttingen, Germany, 1997.
 - Received: January 22, 2013

Published Online: March 8, 2013