Organic & Biomolecular Chemistry

Accepted Manuscript

Organic & Biomolecular Chemistry

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

www.rsc.org/obc

RSCPublishing

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYIN Filme

Rhodium(I)-Catalyzed 1,4-Conjugate Arylation toward β-Fluoroalkylated Electron-Deficient Alkenes: A New Entry to a Construction of a Tertiary Carbon Center Possessing a Fluoroalkyl Group

s Atsunori Morigaki^a, Tomoo Tanaka^b, Tomotsugu Miyabe^b, Takashi Ishihara^b and Tsutomu Konno^b*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Treatment of β -fluoroalkylated- α , β -unsaturated ketones with 1.2 equiv. of various arylboronic acids in the presence of 5 mol% of [Rh(C₈H₁₂)₂]BF₄ and 6 mol% of (S)-BINAP in toluene/H₂O (v/v=4/1) at the

¹⁰ reflux temperature for 3 h gave the corresponding Michael adducts in high yields with over 90% enantioselectivity. Though other electron-deficient alkenes, such as vinyl sulfone and vinylphosphonate, were found to be much less reactive in the rhodium-catalyzed conjugate addition with arylboronic acids, the reaction of various arylstannanes toward such electron-deficient alkenes took place very smoothly to

afford the corresponding adducts in high yields.

15 Introduction

Published on 08 November 2012 on http://pubs.rsc.org | doi:10.1039/C2OB26708J

Downloaded by University of York on 10 November 2012

1,4-Conjugate addition reactions of carbon nucleophiles to α,β unsaturated compounds are among the most widely used methods for carbon-carbon bond formation in organic synthesis (Scheme 1).¹ The versatility for this process is due to the wide variety of 20 donors (organometallic reagents, Michael donors, other carbanions) and acceptors (α,β -unsaturated reagents) that can be employed. In particular, numerous asymmetric version, like copper-,² nickel-,³ cobalt-,⁴ rhodium-,⁵ alkali metal-catalyzed enantioselective reaction,⁶ and others,⁷ have been reported in 25 recent years.

$$\begin{array}{c} R & + & C - Met \\ \hline \\ EWG = an electron-withdrawing \\ group \\ \end{array} \begin{array}{c} Het = Li, Mg \\ Cu, Rh \\ etc \\ \end{array} \begin{array}{c} C, Rh \\ Ch \\ Het \\ \end{array}$$

Scheme 1. 1,4-Conjugate addition reaction.

- ³⁰ It has been well known that the incorporation of a fluoroalkyl moiety to organic molecules can significantly modify its physicochemical features and consequently its biological properties.⁸ Therefore, fluoroalkylated compounds have played a unique and significant role in agricultural and medicinal ³⁵ chemistry.
- Hence, it is not surprising that much effort has been devoted to the development of 1,4-conjugate addition reactions of various carbon nucleophiles toward β -fluoroalkylated electron-deficient alkenes for the preparation of various types of fluorine-containing 40 molecules (Scheme 2, [eq. 1]).
- To date, there have been considerable studies on the 1,4-

conjugate additions toward β -fluoroalkylated α , β -unsaturated ketones,⁹ esters,¹⁰ sulfoxides,¹¹ sulfones,¹² and nitroalkenes¹³ using a variety of carbon nucleophiles, such as enolates, 45 stabilized carbanions, etc. However, *very little attention has been focused on the 1,4-conjugate arylation using arylmetals* (Scheme 2, [eq. 2]),¹⁴ although some Friedel-Crafts arylations using heteroaromatics have been reported so far.¹⁵ We report herein that various arylboronic acids or arylstannanes react very ⁵⁰ smoothly with fluorine-containing α , β -unsaturated compounds in the presence of the rhodium catalyst, particularly in the former case the high enantiocontrol being observed when the catalyst coordinated with (*S*)-BINAP was used.¹⁶

Scheme 2. Intended program.

Results and discussion

Initially, we investigated 1,4-conjugate arylation reaction using $_{60}$ (*E*)-4,4,4-trifluoro-1-phenyl-2-buten-1-one (**1a**) (Rf = CF₃, R = Ph in Scheme 3), prepared readily according to the reported procedure,¹⁷ and phenylboronic acid as shown in Table 1. Thus,

This journal is © The Royal Society of Chemistry [year]

treatment of 1.0 equiv. of **1a** with 1.2 equiv. of phenylboronic acid in the presence of 0.5 mol% of $[Rh(COD)_2]BF_4$ and 0.6 mol% of (*S*)-BINAP in toluene/H₂O (v/v=4/1) at the reflux temperature for 3 h gave the corresponding 1,4-conjugate s arylation product **2a** with 55% enantiomeric excess in 60% yield

- s arylation product 2a with 55% enantiomeric excess in 60% yield (Entry 1). In this case, the product with *R* absolute configuration was afforded preferentially (*vide infra*). When 2.4 equiv. of phenylboronic acid was used, the chemical yield and the enantiomeric excess were both increased (Entry 2). Although the
- ¹⁰ employment of 1 mol% of rhodium catalyst did not cause any influence of the reaction (Entry 3), 5 mol% of the catalyst led to a significant improvement of the optical purity, the desired adduct with 85% enantiomeric excess being obtained in 96% yield (Entry 4). Eventually, the best yield was obtained when the
- ¹⁵ reaction was carried out by using 1.2 equiv. of phenylboronic acid in the presence of 5 mol% of $[Rh(COD)_2]BF_4$ and 6 mol% of (*S*)-BINAP (Entry 5). In this case, the product with 90% enantiomeric excess was obtained in 96% yield.
- As shown in Entries 6-11, we also examined the solvent effect on ²⁰ the conjugate addition. As a result, hexane, THF, DMF, CH₃OH, and CH₃NO₂ were not the solvent of choice, the corresponding adducts being obtained in very low yields (0–32%). Quite interestingly, 1,4-dioxane, which is generally used in the Rh(I)catalyzed conjugate addition with nonfluorinated electron-²⁵ deficient olefins, resulted in the significant decrease of the optical purity of **2a** (23% ee), though the yield was good (Entry 10).

With the optimum reaction conditions (Table 1, Entry 5), we next investigated the conjugate addition of various arylboronic acids. The results are summarized in Table 2.

Scheme 3. Rhodium(I)-catalyzed 1,4-conjugate addition using ³⁵ arylboronic acids.

Table 1.	Investigation	of the reaction	on conditions	(Rf = CF)	3, R, R	$^{1} = Ph$)
	<u> </u>				* / /	

Entry	X/eq	Y/mol%	Solvent	$2a/\%^a$	Ee/% ^b
1	1.2	0.5	Toluene	60	55
2	2.4	0.5	Toluene	91	72
3	2.4	1.0	Toluene	95	74
4	2.4	5.0	Toluene	96	85
5	1.2	5.0	Toluene	96 (90)	90
6	1.2	5.0	Hexane	0	-
7	1.2	5.0	THF	23	34
8 ^c	1.2	5.0	DMF	32	2
9	1.2	5.0	CH ₃ OH	9	4
10	1.2	5.0	1,4-Dioxane	78	23
11	1.2	5.0	CH ₃ NO ₂	22	36

a) Determined by ¹⁹F NMR. Value in parentheses is of isolated yield. b) Determined by HPLC (Chiralpac AD). c) Carried out at 100 °C

10	Table 2.	Conjugate	addition	of	various	boronic	acids	toward	various
	fluorinatd								

Entry	Substrate	;	Product		2 /% ^b	Ee/% ^c View Online
1	F ₃ C	1a	CF3 0	2a	96 (90)	90
2	F ₃ C	1a	Me	2b	95 (91)	92
3	F ₃ C	1a	MeO CF3 0	2c	96 (89)	92
4	F ₃ C	1a		2d	95 (94)	94
5	F ₃ C	1a	CF ₃ O	2e	89 (81)	91
6	F ₃ C	1a		2f	3	N.D. ^d
7	F ₃ C	1a	F CF3 0	2g	84 (80)	90
8	F ₃ C	1a	Me CF3 O	2h	96 (95)	93
9	F ₃ C	1a		2i	95 (80)	92
10	F ₃ C	1a		2j	79 (65)	90
11	F ₃ C	1 a	CF3 0	2k	51 ^[e]	70
12	F ₃ C	1b	CF3 O T OEt	21	60 ^[e]	N.D. ^d
13	F ₃ C NMe ₂	1c	CF ₃ O T NMe ₂	2m	53 (46)	92
14	F ₃ C ^{NO} 2	1d	CF ₃ ^Ţ NO ₂	2n	60 (45)	5
15	F₃C ^{SO₂Ph}	1e	CF ₃ O ₂	20	30 (27)	9
16	F ₃ C ~ P(O)(OEt) ₂	1f	P(O)(OEt) ₂	2p	13	N.D. ^d
17	F ₂ HC	1g	CHF ₂ O	2q	96 (92)	74
18	CF3 O	1h	CF3 0	2a	91	90

a) All reaction was carried out by using 1.0 equiv. of the electrondeficient alkene and 1.2 equiv. of boronic acid in the presence of 5 mol% of $[Rh(COD)_2]BF_4$ and 6 mol% of (S)-BINAP in toluene/H₂O (v/v=4/1) at the reflux temperature for 3 h. b) Determined by ¹⁹F NMR. Values in parentheses are of isolated yield. c) Determined by HPLC (Chiral pac AD-H). d) Not determined. e) The product could not be purified due to some impurities.

2 | Journal Name, [year], [vol], 00–00

This journal is C The Royal Society of Chemistry [year]

As shown in Entries 2-4 and 7-9, various types of arylboronic acids having an electron-donating (CH₃, CH₃O) or an electronwithdrawing group (Cl, F, CH₃CO, EtO₂C) on the benzene ring could participate nicely in the conjugate addition to give the ⁵ corresponding adducts **2b-d**, **2g-i** in excellent yields (84–96% yield) with high enantioselectivity (90–94% ee). However, the

- use of *ortho*-substituted arylboronic acid, such as *o*-chlorophenylor 1-naphthylboronic acid, resulted in a significant decrease of the reaction efficacy (3% or 51% yield in Entries 6 or 11), while
- ¹⁰ *meta*-substitution of the benzene ring of $R^1B(OH)_2$ did not influence on the reaction at all (Entry 5). 2-Thienylboronic acid was also found to be a good Michael donor in the reaction (Entry 10), though the yield decreased slightly.
- We also examined the conjugate addition reaction using various 15 types of fluorine-containing electron-deficient alkenes. As shown in Entries 12-14, the reaction of various electron-deficient alkenes, such as α,β -unsaturated ester **1b**, amide **1c**, or nitroalkene **1d**¹⁸, proceeded to give the corresponding adducts **21n** in good yields. Especially, the high enantioselectivity (92% ee)
- ²⁰ was observed in the case of the amide (Entry 13). Unfortunately, the vinyl sulfone **1e** and the vinylphosphonate $\mathbf{1f}^{19}$ did not give the satisfactory results, the product being afforded in very low yields as well as in a very low enantioselective manner (Entries 15 and 16). Changing the fluoroalkyl group from a CF₃ group to
- ²⁵ a CHF₂ group also caused a decrease of the enantiomeric excess. The use of (*Z*)-substrate **1h** afforded the Michael adduct **2a** with the same absolute configuration as in the reaction of (*E*)-substrate **1a** (Entry 1 vs Entry 18).
- In order to reveal why the same product, (*R*)-stereoisomer **2a** was ³⁰ obtained preferentially in both (*E*)- and (*Z*)-substrates, we treated **1h** with 5 mol% of [Rh(COD)₂]BF₄ and 6 mol% of (*S*)-BINAP in toluene/H₂O (v/v = 4/1) at the reflux temperature for 3 h. As a result, **1h** was completely comsumed, **1a** being obtained quantitatively (Scheme 4). This experimental result indicates that ³⁵ rhodium catalyst coordinated with (*S*)-BINAP as a ligand catalyzes the alkene-isomerizaiton much more rapidly than the conjugate addition reaction.²⁰

Scheme 4. Rhodium(I)-catalyzed alkene-isomerization.

- The stereochemical assignment of **2** was made as follows ⁴⁵ (Scheme 5). Thus, treatment of optically active **2a** with 2.0 equiv. of LiAlH₄ in THF at 0 °C for 1 h gave a 1 : 1 diastereomeric mixture of the corresponding alcohol **3a** in 81% yield, which were subjected to 2.0 equiv. of CuSO₄-SiO₂ in hexane at the reflux temperature for 2 h,²¹ giving the known compound **4a**.
- ⁵⁰ The comparison of the observed optical rotation of **4a** with its literature value made it possible to determine the absolute configuration of **2a** as R.²²

Scheme 5. Determination of the absolute configuration of 2a.

The proposed mechanism for the present reaction is outlined in $_{60}$ Scheme 6. $^{5a, 5b, 5d, 5f}$

Thus, (*E*)-substrate (or which was produced *via* isomerization of (*Z*)-isomer) may come close to arylrhodium species coordinated with (*S*)-BINAP (**Int-A**), avoiding the phenyl group on phosphorus atom. Then, *si* face of the alkene may coordinate ⁶⁵ with aryl-rhodium species, followed by the attack of the aryl group, affording the corresponding rhodium enolate (**Int-B**). Finally, the enolate may react with H₂O to give the corresponding Michael adduct, and the rhodium species coordinated with (*S*)-BINAP may be regenerated.

Scheme 6. A plausible reaction mechanism.

Next, our attention was directed toward the conjugate addition of 75 organostannanes into fluorine-containing electron-deficient alkenes.

Page 3 of 9

This journal is $\ensuremath{\mathbb O}$ The Royal Society of Chemistry [year]

Initially, screening of the solvent was done in detail as shown in Table 3. Thus, treatment of **1a** (Rf = CF₃, R = Ph) with 1.2 equiv. of phenyltributylstannane in the presence of 2 mol% of [Rh(COD)₂]BF₄ in toluene at 90 °C for 2 h gave the ⁵ corresponding adduct **2a** in 76% yield (Entry 1). In this case, any trace of the starting α , β -unsaturated ketone was not detected. Changing the solvent from toluene to THF led to an increase of the yield, the desired adduct being afforded in 86% yield (Entry

- 2). Acetonitrile as well as 1,2-dichloroethane were also found to ¹⁰ be the solvent of choice (Entries 3 and 4), while the use of DMF and 1,4-dioxane caused a significant decrease of the yield (Entries 5 and 6). In the absense of catalyst, the reation did not proceed at all (Entry 7).
- Then, we next investigated the reaction under the influence of ¹⁵ various rhodium catalysts as shown in Entry 8-16. Addition of phosphine ligand, such as PPh₃, P(*o*-Tol)₃, P(*t*-Bu)₃, PCy₃, did not cause any significant change in the yield (Entries 8-11). In addition, the use of [RhCl(COD)]₂ afforded the desired adduct in high yield (Entry 13). However, very disappointingly, the ²⁰ catalyst, [Rh(COD)₂]BF₄ + (*S*)-BINAP, which is the catalyst of choice in the conjugate addition with various boronic acids, was
- found to be less reactive, the adduct being obtained in only 61% yield. Additionally, no enantioselectivity was observed in this case (Entry 12). Furthermore, all of [Rh(COD)(MeCN)₂]BF₄, ²⁵ Willkinson catalyst, and Rh(acac)(C₂H₄)₂ did not give satisfactory results (Entries 14-16).

Scheme 7. Rhodium(I)-catalyzed 1,4-conjugate addition using arylstannanes.

Table 3.	Investigation	of the	reaction	conditions	(Rf =	CF ₃ ,	R, R	$^{1} = Ph$).
					`		2		

Entry	Catalyst	Solvent	2a /% ^a
1 b	$[Rh(COD)_2]BF_4$	Toluene	76
2	$[Rh(COD)_2]BF_4$	THF	86 (68)
3 ^b	[Rh(COD) ₂]BF ₄	DMF	64
4b	$[Rh(COD)_2]BF_4$	1,4-Dioxane	66 ^c
5	[Rh(COD) ₂]BF ₄	MeCN	80
6 ^b	$[Rh(COD)_2]BF_4$	ClCH ₂ CH ₂ Cl	87
7	None	THF	0
8	$[Rh(COD)_2]BF_4 + 2PPh_2$	THF	84
9	$[Rh(COD)_2]BF_4 + 2P(o-Tol)_3$	THF	88
10	$[Rh(COD)_2]BF_4 + 2P(t-Bu)_3$	THF	86
11	$[Rh(COD)_2]BF_4 + 2PCy_3$	THF	87
12	$[Rh(COD)_2]BF_4 + (S)-BINAP$	THF	61 ^d
13	$1/2[RhCl(COD)_2]$	THF	88
14	[Rh(COD)(MeCN) ₂]	THF	41
15	RhCl(PPh ₃) ₃	THF	0
16	$Rh(acac)(C_2H_4)_2$	THF	0
a) De b) Ca	termined by ¹⁹ F NMR. Value in parenthese rried out at 90 °C (bath temp).	es is of isolated yield.	

c) The starting α,β-unsaturated ketone was recovered in 7% yield
 d) No enantioselectivity was observed.

a) Determined by ¹⁹F NMR. Values in parentheses are of isolatd yield.
 b) Five mol% of rhodium catalyst were used.

4 | Journal Name, [year], [vol], 00-00

35

This journal is C The Royal Society of Chemistry [year]

With the best reaction conditions in hand (Table 3, Entry 2), we next examined the reaction using various organostannanes as shown in Table 4.

View Online

Table 4.	Conjugate	e addition	of	various	organosta	nnanes	toward
various fl	uorinated e	electron-de	efic	cient alk	enes.		

Entry	Substrate		Product		2 /% ^a	1/%ª
1	F ₃ C	1 a	CF3 0	2a	86 (68)	trace
2	F ₃ C	1 a	Me CF3 0	2b	75	0
3	F ₃ C	1 a	MeO CF3 O	2c	87 (56)	trace
4	F ₃ C	1a	CF ₃ O OMe	2r	87 (66)	trace
5	F ₃ C	1 a	CF ₃ O OMe	2s	31	26
6	F ₃ C	1 a	CF3 0 CI	2d	75 (67)	0
7	F ₃ C	1a	Me CF3 0	2h	89 (54)	0
8	F ₃ C	1a		2i	78 (59)	0
9	F ₃ C	1a	N ² C	2t	39 (13)	38
10	F ₃ C	1 a	CF ₃ O	2u	14	29
11	F ₃ C	1 a	CF3 0	2j	10	25
12	F ₃ C	1b	CF3 O	21	65	0
13	F ₃ C NMe ₂	1c	CF ₃ O NMe ₂	2m	23	20
14	F ₃ C ^{NO} 2	1d	CF ₃ NO ₂	2n	19	16
15 ^b	$F_3C ^{O_2Ph}$	1e	CF ₃ O ₂	20	77 (61)	8
16 ^b	F ₃ C ~ P(O)(OEt) ₂	1f	CF ₃ P(O)(OEt) ₂	2p	82 (47)	0
17	O F₂HC → Ph	1g	CHF ₂ O	2q	86 (60)	trace

Published on 08 November 2012 on http://pubs.rsc.org | doi:10.1039/C2OB26708J

Downloaded by University of York on 10 November 2012

As shown in Entries 2, 3 and 6-8, various types of arylstannanes having an electron-donating (CH₃, CH₃O) or an electronwithdrawing group (Cl, EtO₂C, CH₃CO) on the benzene ring could participate nicely in the conjugate addition to give the corresponding adducts $2h_2d_1 + h_1$ in high yields (75.89% yield)

⁵ corresponding adducts 2b-d, 2h, i in high yields (75-89% yield). However, the use of *ortho*-substituted and *para*-cyano-substituted arylstannanes resulted in a significant decrease of the reaction efficacy (31% and 39% yield in Entries 5 and 9). Additionally, 2-furyl and 2-thienyl functionalities were all found to be somewhat
 ¹⁰ less reactive, the desired adducts being afforded in less than 20% yield (Entries 10 and 11).

We also examined the conjugate addition reaction using various types of fluorine-containing electron-deficient olefins. As shown in Entry 12, the reaction with α , β -unsaturated ester **1b** proceeded

- ¹⁵ smoothly to give the corresponding adducts **21** in good yields, while α , β -unsaturated amide as well as nitroalkene did not give any satisfactory results (Entries 13 and 14). It is noteworthy that both trifluoromethylated vinyl sulfone and vinylphosphonate could react with phenylstannane very smoothly to give the
- ²⁰ corresponding 1,4-adducts **20**, **2p** in high yields, because the reaction with arylboronic acids did not afford the 1,4-adducts in good yields (Entries 15 and 16 in Table 2). Changing a fluoroalkyl group from a CF_3 group to a CHF_2 group did not influence on the reaction at all (Entry 17).
- ²⁵ As shown in Scheme 8, the reaction mechanism, which is similar to that in the reaction with boronic acids, may be proposed.^{5c, 5e} Thus, the transmetalation of the cationic rhodium complex with organostannane produces the organorhodium intermediate Rh-R¹ and Bu₃SnBF₄. Addition of Rh-R¹ toward electron-deficient ³⁰ alkenes 1 leads to the η^3 -oxa- π -allylrhodium complex Int-C, which then reacts with Bu₃SnBF₄ to afford stannyl enol ether Int-D and to regenerate the cationic rhodium complex. The stannyl enol ether Int-D is easily hydrolyzed to afford product 2.

Scheme 8. A plausible reaction mechanism.

Conclusions

In summary, we have demonstrated the rhodium-catalyzed conjugate addition reaction of various arylboronic acids as well ⁴⁰ as arylstannanes toward various β -fluoroalkylated electron-deficient olefins. As a result, α , β -unsaturated ketones and amide, not vinylsulfone and vinylphosphonate, could participate in the highly enantioselective conjugate addition very well. In sharp contrast, organostannanes were found to be more reactive in the

⁴⁵ case of vinylsulfone and vinylphosphonate as Michael donor, the corresponding adducts being given in high yields.

Notes and references

- ^aFunctional Materials Research Laboratories Research & Development 50 Headquarters LION CORPORATION, 7-2-1 Hirai, Edogawa-ku, Tokyo
- 132-0035, Japan ^bDepartment of Chemistry and Materials Technology, Kyoto Institute Online Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan Fax: 81-75-724-7580; Tel: 81-75-724-7517; E-mail:konno@chem.kit.ac.jp
- 55 * Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/b000000x/

Experimental

- ⁶⁰ General information: Infrared spectra (IR) were taken on a JASCO FT/IR-4100typeA spectrometer as film on a NaCl plate. ¹H and ¹³C NMR spectra were measured with a Bruker DRX-500 NMR spectrometer and a JEOL JNM- AL 400 NMR spectrometer in a chloroform-*d* (CDCl₃) solution with ⁶⁵ tetramethylsilane (Me₄Si) as an internal reference. A JEOL JNM-EX90A (84.21 MHz) FT-NMR spectrometer and a JEOL MAR spectrometer and a JEOL MAR spectrometer and a JEOL MAR spectrometer and a JEOL JNM-EX90A (84.21 MHz) FT-NMR spectrometer and a JEOL MAR spectromete
- JNM-AL 400 NMR spectrometer were used for determining the yield of the products with hexafluorobenzene (C_6F_6). ¹⁹F NMR (376.05 MHz) spectra was measured with a JEOL JNM-AL 400
- ⁷⁰ NMR spectrometer in a chloroform-*d* (CDCl₃) solution with trichlorofluoromethane (CFCl₃) as an internal standard. Highresolution mass spectra (HRMS) were taken on a Hitachi M-80B mass spectrometer by electron impact (EI), chemical ionization (CI), and fast atom bombardment (FAB) methods. Thin-layer
- $_{75}$ chromatography (TLC) was done on aluminium sheets coated with silica gel (Merck 60 F_{254}), and column chromatography was carried out using silica gel (Wacogel C-200) as adsorbent. Liquid choromatographic analysis were conducted on a Shimadzu LC-10Avp instrument equipped with model SPD-10Avp
- ⁸⁰ spectrometers as an ultra violet light (254 nm) and chiral column (Daicel CHIRALPAC AD-H). Optical rotations were measured on a Horiba high sensitive polarimeter SEPA-200. Specific rotations, $[\alpha]_D$, were reported in degree and the concentration (*c*) was given in gram per 100 mL of the indicated solvent.
- ⁸⁵ All chemicals were of reagent grade and, if necessary, were purified in the usual manner prior to use.

Typical experimental procedure for the conjugate addition of 90 aryl- and alkenylboronic acids to electron deficient ofefins

A mixture of phenylboronic acid (37 mg, 3.00 mmol), bis(1,5cyclooctadiene)rhodium tetrafluoroborate (5.00 mg, 5 mol%), (S)-2,2'-bis(diphenylphosphino)-1,1'-binaphtyl [(S)-BINAP] (9.00 mg, 6 mol%) and the 4,4,4-trifluoro-1-phenyl-2-butenone 95 (1a) (50 mg, 0.25 mmol) were placed in a flask and then a distilled toluene/water mixture (4 mL/0.5 mL) was added at room temperature. The flask was heated in a preheated oil bath at 120 °C and the mixture was stirred for 3 h. After filtration through silica (eluting ethyl acetate), the solvent was removed under 100 reduced pressure. The residue was purified by silica gel column chromatography to give 4,4,4-trifluoro-1,3-diphenylbutan-1-one (2a) (63 mg, 90% yield). (Method A)

Typical procedure for the 1,4-addition of aryl- and alkenylstannanes to electron deficient ofefins

To a solution of [Rh(COD)₂]BF₄ (5.00 mg, 2 mol%) in THF (1

mL) were added 4,4,4-trifluoro-1-phenyl-2-butenone (1a) (100 mg, 0.50 mmol) and tributylphenylstannane (220 mg, 0.60 mmol) and water (9.00 mg, 0.50 mmol). After addition was completed, the reaction mixture was heated reflux temperature and stirred at

- s that temperature for 2 h. After the reaction was quenched with sat. NH_4Cl aq., the whole was extracted with ethyl acetate three times, and combined organic layers were dried over andydrous Na_2SO_4 , concentrated in *vacuo*. The residue was purified by silica gel column chromatography to give 4,4,4-trifluoro-1,3-u dipherylbutan 1 org (2a) (120 mg 869 (wield) (Mathed P)
- ¹⁰ diphenylbutan-1-one (2a) (120 mg, 86% yield). (Method B)

(3R)-4,4,4-Trifluoro-1,3-diphenylbutan-1-one (2a)

Yield : 90%; $[\alpha]^{34}_{D} = +36.6$ (*c* = 1.04, CCl₄), ee = 90%, AD-H, Hexane : *i*-PrOH = 99.6 : 0.4, 0.7 mL/m (**Method A**); M.P. : 61-

- ¹⁵ 63 °C; ¹H NMR (CDCl₃) δ = 3.60 (dd, J = 4.01, 17.76 Hz, 1H),
 3.70 (dd, J = 9.22, 17.76 Hz, 1H), 4.21-4.30 (m, 1H), 7.26-7.35 (m, 3H), 7.39-7.41 (m, 2H), 7.44-7.48 (m, 2H), 7.56-7.59 (m, 2H),
 7.92-7.94 (m, 1H); ¹³C NMR (CDCl₃) δ = 38.25, 44.77 (q, J = 27.45 Hz), 126.95 (q, J = 279.49 Hz), 128.01, 128.27, 128.67,
 ²⁰ 128.69, 129.00, 133.52, 134.71 (q, J = 1.38 Hz), 136.27, 195.25;
 ¹⁹F NMR (CDCl₃) δ = -70.17 (d, J = 8.83 Hz 3F); IR (KBr) 3065, 3038, 2963, 2910, 1717, 1686, 1595, 1497, 1474, 1450, 1427,
- 1375, 1362, 1339, 1319, 1308, 1256, 1227, 1153, 1001, 961, 922, 880, 779 cm⁻¹.; HRMS calcd for $C_{16}H_{13}F_{3}O$ (M⁺) 278.0918, 25 found 278.0923.

(3*R*)-4,4,4-Trifluoro-3-(4-methylphenyl)-1-phenylbutan-1-one (2b)

Yield : 91%; $[\alpha]^{36}{}_{\rm D}$ = +12.3 (*c* = 1.01, CCl₄), ee = 92%, AD-H, ³⁰ Hexane : *i*-PrOH = 99.6 : 0.4, 0.7 mL/m (**Method A**); M.P. : 80-81 °C; ¹H NMR (CDCl₃) δ = 2.31 (s, 3H), 3.58 (dd, *J* = 3.94, 17.73 Hz, 1H), 3.68 (dd, *J* = 9.33, 17.73 Hz, 1H), 4.15-4.26 (m, 1H), 7.14-7.15 (m, 2H), 7.26-7.29 (m, 2H), 7.44-7.47 (m, 2H), 7.56-7.59 (m, 1H), 7.92-7.94 (m, 2H); ¹³C NMR (CDCl₃) δ = ³⁵ 21.01, 38.23, 44.42 (q, *J* = 27.37 Hz), 127.02 (q, *J* = 279.44 Hz), 128.00, 128.66, 128.82, 129.37, 131.51, 133.46, 136.33, 138.02, 195.33; ¹⁹F NMR (CDCl₃) δ = -70.29 (d, *J* = 11.02 Hz, 3F); IR (KBr) 3036, 2963, 2907, 1686, 1595, 1578, 1520, 1508, 1423, 1373, 1306, 1259, 1200, 1153, 1119, 1097, 1020, 1003, 961, 885,, ⁴⁰ 814 cm⁻¹.; HRMS calcd for C₁₇H₁₅F₃O (M⁺) 292.1075, found 292.1068.

(3*R*)-4,4,4-Trifluoro-3-(4-methoxyphenyl)-1-phenylbutan-1-one (2c)

- ⁴⁵ Yield : 89%; $[\alpha]^{35}_{D} = +12.6$ (*c* =1.00, CCl₄), ee = 92% AD-H, Hexane : *i*-PrOH = 99 : 1, 0.7 mL/m (**Method A**); M.P. : 65-66 °C; ¹H NMR (CDCl₃) δ = 3.56 (dd, *J* = 3.93, 17.67 Hz, 1H), 3.66 (dd, *J* = 9.38, 17.67 Hz, 1H), 3.78 (s, 3H), 4.15-4.23 (m, 1H), 6.85-6.87 (m, 2H), 7.30-7.32 (m, 2H), 7.44-7.47 (m, 2H),
- ⁵⁰ 7.56-7.59 (m, 1H), 7.92-7.93 (m, 2H); ¹³C NMR (CDCl₃) δ = 38.31, 44.54 (q, *J* = 27.53 Hz), 55.16, 114.07, 126.50 (q, *J* = 1.38 Hz), 127.02 (q, *J* = 279.19 Hz), 128.00, 128.68, 130.04, 133.49, 136.34, 159.43, 195.41; ¹⁹F NMR (CDCl₃) δ = -69.80 (d, *J* = 8.83 Hz, 3F); IR (KBr) 3026, 2961, 2839, 1682, 1614, 1595, 1614, 1595, 1616, 1450, 1450, 1450, 1451, 1450, 145
- $_{55}$ 1518, 1450, 1431, 1371, 1308, 1246, 1227, 1207, 1184, 1153, 1121, 1099, 1036, 1001, 961, 883, 818, 764, 685 cm $^{-1}$.; HRMS calcd for $C_{17}H_{15}F_{3}O_{2}$ (M $^{+}$) 308.1024, found 308.1026

(3*R*)-3-(4-Chlorophenyl)-4,4,4-trifluoro-1-phenylbutan-1-one (2d)

Yield : 94%; $[\alpha]^{37}_{D} = +16.5$ (*c* = 1.00, CCl₄), ee = 94%, AD-H, Hexane : *i*-PrOH = 99.6 : 0.4, 0.7 mL/m (**Method A**); M.P. : 66-

- ⁶⁵ 68 °C; ¹H NMR (CDCl₃) δ = 3.59 (dd, J = 3.86, 17.80 Hz, 1H), 3.67 (dd, J = 9.47, 17.80 Hz, 1H), 4.18-4.26 (m, 1H), 7.28-7.35 (m, 4H), 7.45-7.48 (m, 2H), 7.57-7.60 (m, 1H), 7.91-7.93 (m, 2H); ¹³C NMR (CDCl₃) δ = 38.14, 44.30 (q, J = 27.73 Hz), 126.68 (q, J = 279.31 Hz), 128.00, 128.75, 129.00, 130.34, 122.04 (c, J = 1.26 Hz), 128.00, 126.75 (12.00), 130.34,
- ⁷⁰ 133.04 (q, J = 1.26 Hz), 133.67, 134.30, 136.11, 194.96; ¹⁹F NMR (CDCl₃) $\delta = -70.20$ (d, J = 8.83 Hz, 3F); IR (KBr) 2963, 2956, 1670, 1595, 1580, 1497, 1450, 1425, 1319, 1310, 1281, 1250, 1207, 1184, 1157, 1103, 1092, 1069, 1015, 961, 924, 822, 804, 779 cm⁻¹; HRMS calcd for C₁₆H₁₃ClF₃O (M+H) 313.0607, ⁷⁵ found 313.0618.

(3*R*)-3-(3-Chlorophenyl)-4,4,4-trifluoro-1-phenylbutan-1-one (2e)

- Yield : 81%; $[\alpha]^{34}{}_{D}$ = +13.3 (*c* = 1.10, CCl₄), ee = 91% AD-H, ⁸⁰ Hexane : *i*-PrOH = 99.6 : 0.4, 0.7 mL/m (**Method A**); ¹H NMR (CDCl₃) δ = 3.62 (dd, *J* = 4.20, 17.92 Hz, 1H), 3.68 (dd, *J* = 9.05, 17.92 Hz, 1H), 4.21-4.29 (m, 1H), 7.20-7.67 (m, 7H), 7.90-8.03 (m, 2H); ¹³C NMR (CDCl₃) δ = 38.13, 44.50 (q, *J* = 27.68 Hz), 126.62 (q, *J* = 279.44 Hz), 127.39, 128.00, 128.56, 128.74,
- ⁸⁵ 129.07, 129.93, 133.68, 134.51, 136.05, 136.54, 194.81; ¹⁹F NMR (CDCl₃) $\delta = -70.05$ (d, J = 11.02 Hz, 3F); IR (neat) 3065, 2961, 1692, 1597, 1578, 1479, 1450, 1435, 1420, 1371, 1346, 1307, 1258, 1223, 1158, 1109, 1001, 989, 972, 783, 756 cm⁻¹.; HRMS calcd for C₁₆H₁₃ClF₃O (M+H) 313.0607, found 313.0607.

(3*R*)-4,4,4-Trifluoro-3-(4-fluorophenyl)-1-phenylbutan-1-one (2g)

Yield : 80%; $[\alpha]_{D}^{35} = +6.4$ (*c* = 0.85, CCl₄), ee = 90%, AD-H, Hexane : *i*-PrOH = 99 : 1, 0.7 mL/m (**Method A**); M.P. : 94-95 °C; ¹H NMR (CDCl₃) δ = 3.51 (dd, *J* = 3.99, 17.76 Hz, 1H),

- 3.59 (dd, J = 9.40, 17.76 Hz, 1H), 4.12-4.20 (m, 1H), 6.90-6.98 (m, 2H), 7.28-7.51 (m, 5H), 7.83-7.85 (m, 2H); ¹³C NMR (CDCl₃) $\delta = 38.30$, 44.17 (q, J = 27.65 Hz), 115.66 (d, J = 21.38 Hz), 126.80 (q, J = 279.56 Hz), 127.99, 128.75, 130.63, 130.70,
- ¹⁰⁰ 133.63, 136.21, 162.57 (d, J = 247.24 Hz), 195.10; ¹⁹F NMR (CDCl₃) $\delta = -69.88$ (d, J = 8.83 Hz, 3F), -114.68 (s, 1F); IR (KBr) 2926, 2856, 1693, 1659, 1599, 1580, 1514, 1448, 1423, 1350, 1306, 1259, 1165, 1109, 1067, 1016, 962, 922, 831, 791, 689 cm⁻¹.; HRMS calcd for C₁₆H₁₃F₄O (M+H) 297.0903, found ¹⁰⁵ 297.0905.

(3*R*)-3-(4-Acetylphenyl)-4,4,4-trifluoro-1-phenylbutan-1-one (2h)

Yield ; 95%; $[\alpha]^{18}_{D}$ = +32.4 (*c* = 0.98, CCl₄), ee = 93%, AD-H, Hexane : *i*-PrOH = 80 : 20, 0.7 mL/m (**Method A**); M.P. : 96-97 °C; ¹H NMR (CDCl₃) δ = 2.36 (s, 3H), 3.64 (dd, *J* = 3.73, 17.89 Hz, 1H), 3.74 (dd, *J* = 9.81, 17.89 Hz, 1H), 4.27-4.35 (m, 1H), 7.45-7.52 (m, 4H), 7.57-7.60 (m, 1H), 7.91-7.94 (m, 4H); ¹³C NMR (CDCl₃) δ = 26.48, 37.98, 44.79 (q, *J* = 27.67 Hz), 115 126.57 (q, *J* = 279.44 Hz), 127.95, 128.58, 128.72, 129.28,

133.68, 135.98, 136.90, 139.65 (q, J = 1.38 Hz), 194.84, 197.36; ¹⁹F NMR (CDCl₃) $\delta = -69.82$ (d, J = 9.04 Hz, 3F); IR (KBr) 2964, 1738, 1684, 1609, 1595, 1578, 1448, 1427, 1319, 1310, 1250, 1221, 1161, 1123, 1101, 1016, 945, 924, 831, 779, 687 cm⁻¹

6 | *Journal Name*, [year], **[vol]**, 00–00

Published on 08 November 2012 on http://pubs.rsc.org | doi:10.1039/C2OB26708J

Downloaded by University of York on 10 November 2012

¹.; HRMS calcd for $C_{18}H_{16}F_3O_2$ (M+H) 321.1102, found 321.1110.

(3R)-3-(4-Ethoxycarbonylphenyl)-4,4,4-trifluoro-1-

s phenylbutan-1-one (2i)

- Yield : 80%; $[\alpha]^{19}_{D}$ = +31.6 (*c* = 0.77, CCl₄), ee = 92%, AD-H, Hexane : *i*-PrOH = 95 : 5, 0.7mL/m (**Method A**); M.P. : 85-86 °C; ¹H NMR (CDCl₃) δ = 1.37 (t, *J* = 7.12 Hz, 3H), 3.62 (dd, *J* = 3.82, 17.86 Hz, 1H), 3.72 (dd, *J* = 9.53, 17.86 Hz, 1H), 4.25-
- ¹⁰ 4.35 (m, 1H), 4.36 (q, J = 7.12 Hz, 2H), 7.40-7.52 (m, 4H), 7.53-7.61 (m, 1H), 7.86-7.94 (m, 2H), 7.96-8.04 (m, 2H); ¹³C NMR (CDCl₃) $\delta = 14.26$, 38.10, 44.85 (q, J = 27.79 Hz), 61.01, 126.62 (q, J = 279.69 Hz), 128.00, 128.76, 129.07, 129.87, 130.55, 133.69, 136.10, 139.41, 166.05, 194.92; ¹⁹F NMR (CDCl₃) $\delta = -$ ¹⁵ 69.73 (d, J = 8.83 Hz, 3F); IR (KBr) 2963, 1711, 1684, 1614, 1450, 1433, 1369, 1311, 1286, 1250, 1207, 1168, 1151, 1103, 1022, 964, 851, 766, 754, 714, 690, 644, 629, 594 cm⁻¹.; HRMS calcd for C₁₉H₁₈F₃O₃ (M+H) 351.1208, found 351.1214.

20 (3S)-4,4,4-Trifluoro-1-phenyl-3-(2-thienyl)butan-1-one (2j)

Yield : 65%; $[\alpha]^{36}_{D} = -4.4$ (c = 0.98, CCl₄), ee = 90%, AD-H, Hexane : *i*-PrOH = 99.6 : 0.4, 0.7 mL/m (**Method A**); M.P. : 89-91 °C; ¹H NMR (CDCl₃) $\delta = 3.54$ (dd, J = 4.12, 17.60 Hz, 1H), 3.62 (dd, J = 9.03, 17.60 Hz, 1H), 4.38-4.46 (m, 1H), 7.11-7.12 (m, 1H), 7.28-7.30 (m, 2H), 7.45-7.48 (m, 2H), 7.59-7.60 (m, 1H), 7.92-7.94 (m, 2H); ¹³C NMR (CDCl₃) $\delta = 38.58$, 40.26 (q, J =28.37 Hz), 124.16, 126.02, 126.66 (q, J = 279.19 Hz), 127.42, 128.00, 128.70, 133.54, 134.75, 136.25, 195.19; ¹⁹F NMR (CDCl₃) $\delta = -70.64$ (d, J = 8.75 Hz, 3F); IR (KBr) 3749, 3107, 30 3090, 3061, 2964, 2941, 1717, 1684, 1595, 1578, 1541, 1448, 1433, 1331, 1308, 1295, 1219, 1146, 1094, 1016, 978 cm⁻¹.; HRMS calcd for C₁₄H₁₂F₃OS (M+H) 285.0561, found 285.0555.

(3*R*)-*N*,*N*-Dimethyl-4,4,4-trifluoro-3-phenylbutanamide (2m)

³⁵ Yield : 46%; [α]³⁵_D = -44.0 (*c* = 1.01, CCl₄), ee = 92% AD-H, Hexane : *i*-PrOH = 97 : 3, 0.7 mL/m (**Method A**); M.P. : 68-69 °C; ¹H NMR (CDCl₃) δ = 2.87 (s, 3H), 2.94 (d, *J* = 6.72 Hz, 2H), 2.97 (s, 3H), 4.10-4.18 (m, 1H), 7.29-7.37 (m, 5H); ¹³C NMR (CDCl₃) δ = 33.11 (q, *J* = 1.50 Hz), 35.60, 37.03, 46.01 (q, 40 *J* = 27.13 Hz), 127.00 (q, *J* = 279.52 Hz), 128.13, 128.58, 128.93, 134.95 (q, *J* = 1.51 Hz), 168.72; ¹⁹F NMR (CDCl₃) δ = -70.19 (d, *J* = 8.83 Hz, 3F); IR (KBr) 2928, 1637, 1499, 1458, 1354, 1286, 1256, 1211, 1163, 1101, 1059, 966, 880, 804, 783, 758, 706, 687, 613 cm⁻¹; HRMS calcd for C₁₂H₁₅F₃NO (M+H) 246.1107, found 45 246.1102.

3,3,3-Trifluoro-1-nitro-2-phenylpropane (2n)

- Yield : 45%; $[\alpha]^{26}_{D} = +2.8$ (*c* = 0.85, CCl₄), ee = 5%, AD-H, Hexane : *i*-PrOH = 99.6 : 0.4, 0.5 mL/m (**Method A**); ¹H NMR ⁵⁰ (CDCl₃) δ = 4.29-4.37 (m, 1H), 4.84 (dd, *J* = 8.98, 13.76 Hz, 1H), 4.98 (dd, *J* = 5.73, 13.76 Hz, 1H), 7.30-7.36 (m, 2H), 7.37-7.44 (m, 3H); ¹³C NMR (CDCl₃) δ = 48.06 (q, *J* = 28.47 Hz), 73.84, 124.95 (q, *J* = 280.30 Hz), 128.75, 129.26, 129.57, 129.99; ¹⁹F NMR (CDCl₃) δ = -69.47 (d, *J* = 8.75 Hz, 3F); IR (neat) 3040,
- $_{55}$ 2961, 1568, 1458, 1437, 1377, 1304, 1259, 1177, 1119, 1005, 984, 795, 762, 698, 665, 500 cm $^{-1}$; HRMS calcd for $C_9H_8F_3NO_2$ (M $^+$) 219.0507, found 219.0503.

Phenyl 3,3,3-trifluoro-2-phenylsulfone (20)

⁶⁰ Yield : 27%; $[\alpha]_{D}^{35} = -6.1$ (*c* = 1.09, CCl₄), ee = 9%, AD-H,

Hexane : *i*-PrOH = 97 : 3, 0.7 mL/m (**Method A**); Yield : 61% (**Method B**), M.P. : 91-92 °C; ¹H NMR (CDCl₃) δ = 3.74 (dd, J = 3.48, 14.69 Hz, 1H), 3.79 (dd, J = 9.93, 14.69 Hz, 1H), 3.93-4.02 (m, 1H), 7.11-7.13 (m, 2H), 7.18-7.21 (m, 2H) 7.23-7.26 (m, 1H)

⁶⁵ 7.33-7.36 (m, 2H), 7.49-7.52 (m, 1H), 7.58-7.60 (m, 2H); ¹³C¹ NMR (CDCl₃) δ = 45.81 (q, *J* = 28.64 Hz), 55.34, 125.37 (q, *J* = 280.44 Hz), 127.79, 128.73, 128.88, 129.05, 129.08, 131.00, 133.63, 138.95; ¹⁹F NMR (CDCl₃) δ = -70.55 (d, *J* = 6.64 Hz, 3F); IR (KBr) 2986, 1558, 1418, 1310, 1259, 1188, 1157, 1142, 70 1105, 1082, 1030, 870, 795, 754, 698, 689, 592, 550 cm⁻¹; HRMS calcd for C₁₅H₁₃F₃O₂S (M⁺) 314.0588, found 314.0593.

Diethyl (2-phenyl-2-trifluoromethylethyl)phosphonate (2p)

- Yield : 47% (**Method B**), ¹H NMR (CDCl₃) δ = 1.01 (t, *J* = 7.06 Hz, 3H), 1.13 (t, *J* = 7.05 Hz 3H), 2.31-2.44 (m, 2H), 3.53-3.60 (m, 1H), 3.70-3.96 (m, 4H), 7.53 (s, 5H); ¹³C NMR (CDCl₃) δ = 15.97 (d, *J* = 6.29 Hz), 16.02 (d, *J* = 6.54 Hz), 26.03 (dq, *J* = 147.48, 1.46 Hz), 45.09 (dq, *J* = 28.37, 1.92 Hz), 61.63 (d, *J* = 5.85 Hz), 61.67 (d, *J* = 5.33 Hz), 126.28 (dq, *J* = 280.19, 22.89
- ⁸⁰ Hz), 128.51, 128.52, 129.17, 133.58; ¹⁹F NMR (CDCl₃) $\delta = -$ 71.55 (d, J = 9.78 Hz, 3F). IR (neat) 3037, 2984, 2932, 1723, 1497, 1457, 1416, 1393, 1367, 1257, 1176, 1147, 1109, 1061, 1026, 969, 900, 864, 812, 752 cm⁻¹.

85 (3R)-4,4-Difluoro-1,3-diphenylbutan-1-one (2q)

- Yield : 92%; $[\alpha]^{36}_{D} = -12.6$ (*c* = 0.99, CCl₄), ee = 74%, AD-H, Hexane : *i*-PrOH = 99 : 1, 0.7 mL/m (**Method A**); M.P. : 56-58 °C; ¹H NMR (CDCl₃) δ = 3.54 (dd, *J* = 7.99, 17.82 Hz, 1H), 3.62 (dd, *J* = 5.47, 17.82 Hz, 1H), 3.91-4.00 (m, 1H), 6.05 (dt, *J*
- $_{90} = 2.81, 56.61$ Hz, 1H), 7.26-7.59 (m, 8H), 7.95-7.97 (m, 2H); 13 C NMR (CDCl₃) $\delta = 37.37$ (t, J = 2.82 Hz), 44.56 (t, J = 19.97 Hz), 117.24 (t, J = 244.35 Hz), 127.75, 128.01, 128.64, 128.68, 128.90, 133.35, 136.44 (m), 136.65, 196.72; 19 F NMR (CDCl₃) $\delta = -120.18$ (ddd, J = 14.12, 56.61, 276.75 Hz, 1F), -123.34 (ddd, J = 14.12, 56.61, 276.75 Hz, 17), -123.34 (ddd, J = 14.12, 56.61, 276.75 Hz, 17), -123.84 (ddd, J = 14.12, 56.61, 276.75
- $_{95}$ 18.36, 56.61, 276.75, 1F); IR (KBr) 3064, 2963, 2926, 1693, 1597, 1477, 1435, 1418, 1348, 1298, 1258, 1223, 1157, 1084, 1065, 1001, 989, 974, 783, 756, 714, 648 cm $^{-1}$.; HRMS calcd for $\rm C_{16}H_{14}F_{2}O$ (M+H) 261.1091, found 261.1088.

100 4,4,4-Trifluoro-3-(3-methoxyphenyl)-1-phenylbutan-1-one (2r)

Yield : 66% (**Method B**); M.P. : 69-70 °C; ¹H NMR (CDCl₃) δ = 3.58 (dd, J = 4.10, 17.73 Hz, 1H), 3.68 (dd, J = 9.12, 17.73 Hz, 1H), 3.80 (s, 3H), 4.19-4.27 (m, 1H), 6.83-6.85 (m, 1H), 6.93 (s, 105 1H), 6.98 (d, J = 22.70 Hz, 1H), 7.25 (t, J = 8.16 Hz, 1H), 7.46 (m, 2H), 7.57 (m, 1H), 7.93 (m, 2H); ¹³C NMR (CDCl₃) δ = 38.28, 44.77 (q, J = 27.54 Hz), 55.21, 113.39, 115.18, 121.29, 126.91 (q, J = 284.09 Hz), 128.04, 128.71, 129.65, 133.53, 136.05 (q, J = 1.63 Hz), 136.32, 159.65, 195.24; ¹⁹F NMR 10 (CDCl₃) δ = -70.08 (d, J = 9.78 Hz, 3F); IR (KBr) 3073, 3007, 2969, 2942, 2842, 1686, 1602, 1496, 1466, 1450, 1440, 1376, 1317, 1304, 1265, 1251, 1222, 1199, 1160, 1105 cm⁻¹.; HRMS calcd for C₁₇H₁₆F₃O₂ (M+H) 309.1102, found 309.1109.

115 4,4,4-Trifluoro-3-(4-cyanophenyl)-1-phenylbutan-1-one (2t)

Yield : 13% (**Method B**); ¹H NMR (CDCl₃) δ = 3.64 (dd, *J* = 3.96, 18.00 Hz, 1H), 3.70 (dd, *J* = 9.47, 18.00 Hz, 1H), 4.25-4.33 (m, 1H), 7.47 (t, *J* = 7.59 Hz, 2H), 7.52 (d, *J* = 8.21 Hz, 2H),

This journal is C The Royal Society of Chemistry [year]

85

05

110

115

7.57-7.64 (m, 3H), 7.91 (d, J = 7.59 Hz, 2H); ¹³C NMR (CDCl₃) $\delta = 37.99$, 44.98 (q, J = 28.06 Hz), 118.25, 126.37 (q, J = 279.69Hz), 127.99, 128.84, 129.90, 132.44, 133.04, 133.90, 135.85, 139.81, 194.60; ¹⁹F NMR (CDCl₃) $\delta = -69.71$ (d, J = 9.78 Hz, $_{3}$ 3F); IR (neat) 3063, 2927, 2231, 1691, 1597, 1581, 1507, 1449,

 5 5F); IK (neal) 3063, 2927, 2231, 1691, 1597, 1581, 1507, 1449, 1421, 1369, 1307, 1257, 1225, 1159, 1108, 1066, 1022, 1002, 961, 925 cm⁻¹.

Determination of the absolute stereochemistry

- ¹⁰ To a suspension of lithium aluminium hydride (19 mg, 0.50 mmol) in THF (2 mL) was dropwise added a THF solution of **2a** (69 mg, 0.25 mmol) at 0 °C. The reaction mixture was stirred at that temperature for 1 h, and then the reaction was quenched with sturated aqueous NH_4Cl . The whole was extracted with EtOAc
- ¹⁵ three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to give the corresponding alcohols **3a** as a diastereometric mixture in a ratio of 1 : 1 (57 mg, 0.20 mmol, 81% yield).
- ²⁰ To a suspension of CuSO₄-SiO₂ (136 mg)²¹ in hexane (2 mL) was added the alcohols 4a (56 mg, 0.20 mmol) at room temperature. Then the reaction was refluxed for 1 h. After the reaction was allowed to cool to roomtemperature, the mixture was fittered, and concentrated in vacuo. The residue was purified by silica gel ²⁵ column chromatography to afford the dehydrated product **4a**
- (known compound) in 26% yield (14 mg, 0.052 mmol).

Acknowledgment

³⁰ We greatly acknowledge TOSOH F-TECH, INC. for supplying trifluoroacetaldehyde ethyl hemiacetal and ethyl 4,4,4-trifluorocrotonate.

References and notes

- (a) Perlmutter, O. Conjugate Addition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1992. (b) Jung, M. E. Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon; Oxford, 1991; Vol. 4, pp 1-67.
- (a) Hoveyda, A. H.; Hird, A. W.; Kacprzynski, M. A. Chem. Commun. 2004, 1779-1785. (b) Alexakis, A.; Benhaim, C. Eur. J. Org. Chem. 2002, 3221-3236.
- (a) Soai, K.; Hayasaka, T.; Ugajin, S. J. Chem. Soc., Chem. Commun. 1989, 516-517. (b) Soai, K.; Hayasaka, T.; Ugajin, S.; Yokoyama, S. Chem. Lett. 1988, 1571-1572.
- (c) Soai, K.; Yokoyama, S.; Hayasaka, T.; Ebihara, K. J.
 Org. Chem. 1988, 53, 4148-4149.
- (4) (a) Gomez-Bengoa, E.; Heron, N. M.; Didiuk, M. T.; Luchaco, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 7649-7650. (b) De Vries, A. H. M.; Feringa, B. L.
- Tetrahedron: Asymmetry 1997, 8, 1377-1378.
 (5) (a) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503-2508. (b) Hayashi, T. Bull. Chem. Soc. Jpn. 2004, 77, 13-21. (c) Oi, S.; Sato, T.;
- Inoue, Y. Tetrahedron Lett. 2004, 45, 5051-5055. (d)
 Hayashi, T.; Yamasaki, K. Chem. Rev. 2003, 103, 2829-2844. (e) Oi, S.; Moro, M.; Ito, H.; Honma, Y.; Miyano, S.; Inoue, Y. Tetrahedron 2002, 58, 91-97. (f) Hayashi, T. Synlett 2001, 879-887. (g) Sakuma, S.; Sakai, M.; Itooka,
- 60 R.; Miyaura, N. J. Org. Chem. 2000, 65, 5951-5955. (h)

Sakai, M.; Hayashi, H.; Miyaura, N. Organometallics 1997, 16, 4229-4231.

- (6) (a) Yamaguchi, M.; Igarashi, Y.; Reddy, R. S.; Shiraishi, T.; Hirama, M. *Tetrahedron* 1997, 53, 11223-11236. (b) Yamaguchi, M.; Shiraishi, T.; Hirama, M. J. Org. ChemOnline 1996, 61, 3520-3530. (c) Yamaguchi, M.; Shiraishi, T.; Igarashi, Y.; Hirama, M. *Tettrahedron Lett.* 1994, 35,
 - 8233-8236. (d) Yamaguchi, M.; Shiraishi, T.; Hirama, M. *Angew. Chem. Int. Ed. Engl.* **1993**, *32*, 1176-1178.
 (a) Shibata, I.; Kano, T.; Kanazawa, N.; Fukuoka, S.; Baba,
- 70 (7) A. Angew. Chem. Int. Ed. 2002, 41, 1389-1392. (b) Kim, Y. S.; Matsunaga, S.; Das, J.; Sekine, A.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 6506-6507. (c) Matsunaga, S.; Ohshima, T.; Shibasaki, M. Tetrahedron Lett. 2000, 41, 8473-8478. (d) Bernardi, A.; Karamfilova, K.; Sanguinetti, S.; Scolastico, C. Tetrahedron 1997, 53, 13009-13026. (e) Sasai, H.; Emori, E.; Arai, T. Shibasaki, M. Tetrahedron Lett. 1996, 37, 5561-5564. (f) Sasai, H.; Arai, T.; Satow, Y.; Houk, K. N. Shibasaki, M. J. Am. Chem. Soc. 1995, 117, 6194-6198. (g) Kobayashi, S.; Suda, S.; Yamada, M.; Mukaiyama, T. Chem. Lett. 1994, 97-100. (h) Sasai, H.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1994, 116, 1571-1572.
 - (a) Young, S. D.; Britcher, S. F.; Tran, L. O.; Linda, L. S.; (8)Lumma, W. C.; Lyle, T. A.; Hyff, J. R.; Anderson, P. S.; Olson, D. B.; Carrol, S. S.; Pettibone, Z. D.; Obrien, J. A.; Ball, R. G.; Balani, S. K.; Lin, J. H.; Chen, I. W.; Schleif, W. A.; Sardana, V. V.; Long, W. J.; Brynes, V. W.; Emni, Antimicrob. Agents Chemother. 1995, 39, 2602-2605. (b) Pierce, M. E.; Parsons, Jr. R. L.; Radesca, L. A.; Lo, Y. S.; Silverman, S.; Moore, J. R.; Islam, Q.; Choudhury, A.; Fortunak, J. M. D.; Nguyen, D.; Luo, C.; Mogan, S. J.; Davis, W. P.; Confalone, P. N.; Chen, C.; Tillyer, R. D.; Frey, L.; Tan, L.; Xu, F.; Zhao, D.; Thompson, A. S.; Corley, E. G.; Grabowski, E. J. J.; Reamer, R.; Reider, P. J. J. Org. Chem. 1998, 63, 8536-8543. (c) Sculptoreanu, A.; Yoshimura, N.; de Grout, W. C. J. Pharmacol. Exp. Ther. 2004. 310. 159-168.
- (9) (a) Kawai, H.; Kitayama, T.; Tokunaga, E.; Matsumoto, T.; Sato, H.; Shiro, M.; Shibata, N. *Chem. Commun.* 2012, 48, 4067-4069. (b) Contreras, J.-M.; Rival, Y. M.; Chayer, S.; Bourguignon, J.-J.; Wermuth, C. G. *J. Med. Chem.* 1999, 42, 730-741. (c) Marrec, O.; Christophe, C.; Billard, B.; Langlois, B.; Vors, J.-P.; Pazenok, S. *Adv. Synth. Catal.* 2010, 352, 2825-2830.
 - (10) (a) Shinohara, N.; Yamazaki, T.; Kitazume, T. *Rev. Heteroatom Chem.* **1996**, *14*, 165-182. (b) Shinohara, N.; Haga, J.; Yamazaki, T.; Kitazume, T.; Nakamura, S. *J. Org. Chem.* **1995**, *60*, 4363-4373. (c) Yamazaki, T.; Shinohara, N.; Kitazume, T.; Sato, S. *J. Org. Chem.* **1995**, *60*, 8140-8141. (d) Yamazaki, T.; Haga, J.; Kitazume, T.; Nakamura, S. *Chem. Lett.* **1991**, 2171-2174. (e) Yamazaki, T.; Haga, J.; Kitazume, T. *Chem. Lett.* **1991**, 2175-2178. (f) Gestman, D.; Laurent, A. J.; Laurent, E. G. *J. Fluorine Chem.* **1996**, *60*, 27-30. (g) Ruano, J. L. G.; Haro, T. D.; Singh, R.; Cid, M. B. *J. Org. Chem.* **2008**, *73*, 1150-1153.
 - (11) (a) Yamazaki, T.; Ishikawa, N.; Iwatsubo, H.; Kitazume, T. J. Chem. Soc., Chem. Commun. 1987, 1340-1341. (b) Yamazaki, T.; Ishikawa, N. Chem. Lett. 1985, 889-892.
 (c) Yamazaki, T.; Kitazume, T. J. Synth. Org. Chem. Jpn. 1991, 49, 721-736. (d) Konno, T.; Yamazaki, T.; Kitazume, T. Tetrahedron 1996, 52, 199-208.
 - (12) Taguchi, T.; Tomizawa, G.; Kawara, A.; Nakajima, M.; Kobayashi, Y. J. Fluorine Chem. **1988**, 40, 171-182
- (13) (a) Iwata, S.; Ishiguro, Y.; Utsugi, M.; Mitsuhashi, K.; Tanaka, K. Bull. Chem. Soc. Jpn. **1993**, 66, 2432-2435.

Page 8 of 9

^{8 |} Journal Name, [year], [vol], 00-00

This journal is © The Royal Society of Chemistry [year]

Published on 08 November 2012 on http://pubs.rsc.org | doi:10.1039/C2OB26708J

Downloaded by University of York on 10 November 2012

(b) Molteni, M.; Consonni, R.; Giovenzana, T.; Malpezzi, L.; Zanda, M. *J. Fluorine Chem.* **2006**, *127*, 901-908.

- (14) Only the following examples have been reported. See. (a) Yamazaki, T.; Shinohara, N.; Kitazume, T.; Sato, S. J.
- Fluorine Chem. 1999, 97, 91-96. (b) Konno, T.; Yamada, S.; Tani, A.; Nishida, M.; Miyabe, T.; Ishihara, T. J. Fluorine Chem. 2009, 130, 913-921. (c) Konno, T.; Yamada, S.; Tani, A.; Miyabe, T.; Ishihara, T. Synlett 2006, 3025-3028. (d) Maruoka, K.; Shimada, I.; Imoto, H.; Yamamoto, H. Synlett 1994, 519-520.
- (15) (a) Lin, J.-H.; Xiao, J.-C. Eur. J. Org. Chem. 2011, 4536-4539. (b) Klenz, O.; Evers, R.; Miethchen, R.; Michalik, M. J. Fluorine Chem. 1997, 81, 205-210. (c) Huang, Y.; Tokunaga, E.; Suzuki, S.; Shiro, M.; Shibata, N. Org. Lett.
- 2010, 12, 1136-1138. (d) Blay, G.; Fernández, I.; Muñoz, M. C.; Pedro, J. R.; Vila, C. Chem. Eur. J. 2010, 16, 9117-9122. (e) Wang, W.; Lian, X.; Chen, D.; Liu, X.; Lin, L.; Feng, X. Chem. Commun. 2011, 47, 7821-7823.
- (16) As our preliminary findings, see. Konno, T.; Tanaka, T.;
 ²⁰ Miyabe, T.; Morigaki, A.; Ishihara, T. *Tetrahedron Lett.* **2008**, 49, 2106-2110.
- (17) Funabiki, K.; Matsunaga, K.; Nojiri, M.; Hashimoto, W.;
 Yamamoto, H.; Shibata, K.; Matsui, M. J. Org. Chem.
 2003, 68, 2853-2860.
- 25 (18) Molteni, M.; Volonterio, A.; Zanda, M. Org. Lett. 2003, 5, 3887-3890.
 - (19) Nickson, T. E. J. Org. Chem. 1998, 53, 3870-3872.
- (20) It is possible that the rhodium complex works as a Lewis acid to promote the isomerization. However, the detailed reaction mechanism for the isomerization remains unclear at present and an exact explanation for the mechanism awaits further investigation.
- (21) (a) Nishiguchi, T.; Machida, N.; Yamamoto, E. *Tetrahedron Lett.* 1987, 28, 4565-4568. (b) Nishiguchi,
 T.; Kamio C. J. Chem. Soc., Perkin Trans. 1 1989, 707-710.
 - (22) Konno, T.; Takehana, T.; Mishima, M.; Ishihara, T. J. Org. *Chem.* **2006**, *71*, 3545-3550.

View Online

This journal is © The Royal Society of Chemistry [year]