ARTICLE IN PRESS

Tetrahedron Letters xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Bio-inspired oxidative phenolic coupling: Total synthesis of the diarylether heptanoid (±)-pterocarine

M. Quamar Salih^a, Christopher M. Beaudry^{b,*}

^a Bayer, U.S. 8400 Hawthorne Rd, Kansas City, MO 64120, USA ^b 153 Gilbert Hall, Oregon State University, Corvallis, OR 97331, USA

ARTICLE INFO

Article history: Received 8 March 2017 Revised 28 March 2017 Accepted 4 April 2017 Available online xxxx

Keywords: Total synthesis Oxidative coupling Biomimetic Natural product

ABSTRACT

The diaryletherheptanoid natural product, pterocarine, is expeditiously synthesized using a bioinspired intramolecular oxidative phenolic coupling of acerogenin G. The cyclization precursor is prepared from a simple cinnamic acid derivative in three high yielding synthetic operations. The key oxidative coupling is inspired by biosynthetic hypotheses; however, the oxidative coupling proceeds with concomitant hydroxylation of the diphenyl ether motif.

© 2017 Elsevier Ltd. All rights reserved.

etrahedro

Introduction

The diaryletherheptanoids (DAEHs) are a family of more than two dozen natural products isolated from woody plants (Fig. 1).¹ Their cyclophanic molecular architecture is characterized by a medium sized ring made of a diphenylether and a heptanoid ansa bridge, exemplified by the relatively simple DAEHs acerogenins L (1) and C (2).

Individual DAEH family members are distinguished by a higher oxidation state of the ansa bridge (e.g. **3** and **4**) or by alkoxy groups that decorate the diphenylether motif (e.g. **5** and **6**). Perhaps the most interesting aspect of the DAEH structure is that some family members (e.g. **5** and **6**) are chiral non-racemic molecules that exist in stable enantiomeric conformations that racemize only slowly at high temperatures (e.g. >200 °C).² As a result of these observations, the DAEHs have attracted the attention of several synthetic groups,³ including our own.^{2,4}

DAEH biosynthesis has long been postulated to involve an intramolecular oxidative phenolic coupling of a linear precursor (Scheme 1).^{5.6} Specifically, oxidative coupling of acerogenin G (**7**) could lead to **1**, **2**, or to biphenylheptanoid acerogenin E (**8**). Furthermore, experimental evidence from feeding experiments with isotopically enriched primary metabolites in *Acer nikoense* supports such a cyclization in the biosynthesis of the acerogenins.⁷ Attempts to affect such a cyclization in the laboratory have met

* Corresponding author. *E-mail address:* christopher.beaudry@oregonstate.edu (C.M. Beaudry).

http://dx.doi.org/10.1016/j.tetlet.2017.04.015 0040-4039/© 2017 Elsevier Ltd. All rights reserved.

Fig. 1. Selected diaryletherheptanoid natural products.

little success. Whiting and Wood attempted to oxidize **9** to a biphenyl; however, unexpected byproduct **10** was observed.⁸ Note that in this cyclization, the *para*-substituted phenyl ring of the cyclophane bears *fewer* oxygen substituents, which is *not* the pattern seen in DAEH natural products such as **5** and **6**. To the best of our knowledge, no DAEH has been prepared using an oxidative phenolic coupling of this type.

A bio-inspired oxidative coupling reaction would represent an expeditious synthetic strategy to DAEH natural products from relatively simple cyclization substrates. If successful, such a reaction could be used to rapidly prepare DAEH natural products and congeners for subsequent studies (i.e. racemization measurements, cytotoxicity studies, etc.). We decided to investigate such a M.Q. Salih, C.M. Beaudry/Tetrahedron Letters xxx (2017) xxx-xxx

Scheme 1. Biosynthetic considerations of the acerogenins.

Scheme 2. Synthesis of acerogenin G (7).

cyclization in a relatively uncomplicated DAEH system, and we elected to investigate the cyclization of **7** to **1**, **2**, or biarylheptanoid **8**. We speculated that control of the regio- and chemoselectivity could be possible through judicious choice of the oxidant.

Results and discussion

Preparation of key substrate **7** was accomplished using standard transformations (Scheme 2). Cinnamic acid derivative **11** is a known⁹ commercially available molecule that was converted to the corresponding phosphonate (**12**) following standard conditions.¹⁰ Horner–Wadsworth–Emmons reaction with aldehyde **13** gave dienone **14** in high yield. Reduction of **14** resulted in hydrogenation of both carbon–carbon double bonds and hydrogenolysis of the benzyl ethers to give cyclization substrate **7** in near quantitative yield.

Our attempts to realize an oxidative cyclization of **7** began using standard oxidants with literature precedent for similar oxidative transformations of phenols (Table 1). Reagents containing hypervalent iodine (BAIB, PIFA)¹¹ gave no reaction and forcing conditions (i.e. elevated temperatures) led to decomposition. Other oxidants (SeO₂,¹² salcomine,¹³ FeCl₃¹⁴) did not lead to oxidation of the substrate. Some transition metal oxidants (VOCl₃,¹⁵ KMnO₄,¹⁶ MnO₂,¹⁷ K₃Fe(CN)₆,¹⁸ and CAN¹⁹) gave complex mixtures of products that did not contain the desired cyclophanes.

Encouragingly, use of $Pb(OAc)_4^{20}$ as an oxidant gave trace amounts of cyclophane products that we tentatively assigned as **15**; however, attempts to optimize the transformation with this oxidant were unsuccessful. We next evaluated PbO_2 as a reagent for the oxidative cyclization, as it is an oxidant that has been used for the conversion of phenols to phenoxyl radicals.^{21,22} Gratifyingly, this oxidant affected the oxidation of **7** to **15** and **16**. The reaction is quite clean (no by products) and is moderately high yielding based on recovery of 40% of the starting material.²³ Sur-

Table 1

Oxidative cyclization of acerogenin G (7).

Entry	Conditions	Result/yield (%)
1	PhI(OAc) ₂ , K ₂ CO ₃ , CF ₃ CH ₂ OH	No rxn
2	PhI(TFA) ₂ , K ₂ CO ₃ , CF ₃ CH ₂ OH	No rxn
3	SeO ₂ , K ₂ CO ₃ , dioxane, H ₂ O	No rxn
4	Salcomine (1 equiv.), MeOH, DMF	No rxn
5	FeCl ₃ , O ₂ , Et ₂ O, Δ	No rxn
6	VOCl ₃ , CH ₂ Cl ₂	Decomp
7	KMnO ₄ , K ₂ CO ₃ , EtOH	Decomp
8	K ₃ Fe(CN) ₆ , K ₂ CO ₃ , EtOH	Decomp
9	(NH ₄) ₂ Ce(NO ₃) ₆ , MeCN	Decomp
10	$Pb(OAc)_4$, CH_2Cl_2	15 (~5%)
11	PbO ₂ , HOAc	15 (20%) + 16 (7%) + 7 (40%)

prisingly, the cyclization occurs with concomitant oxidative hydroxylation of the diphenylether, and with esterification of a resident phenol, leading to acetyl pterocarine (**15**) and its regioisomer (**16**). The regiochemistry of the reaction was relatively modest, favoring **15** in an approximate 3:1 ratio. Interestingly, the reaction was completely chemoselective, and we found no evidence of formation of any biphenylheptanoid such as **8**.

We know of no other reported oxidative phenolic coupling (inter- or intramolecular) that occurs with concomitant oxidation of the diphenylether motif.²⁴ In the oxidation of **7**, the mechanistic order of oxidation steps is unclear; we did not detect any uncyclized acetoxylated intermediates or any acerogenins (i.e. **1** or **2**) in the product mixture. However, it is possible that once formed, the cyclophane ring strain renders the phenyl group more prone to oxidative hydroxylation. Whether or not such a cyclophane hydroxylation has biosynthetic relevance for hydroxylated or methoxylated DAEHs such as **5** or **6** is unclear.

With the successful preparation of **15**, we advanced this material to pterocarine (**5**). Separation of **15** and **16** was possible using standard chromatography. Although chemical shift considerations suggested the major product was properly assigned as structure **15**, establishing the structure of **15** and **16** was not straightforward. However, hydrolysis of **15** gave pterocarine (**5**), which we had previously prepared, and the physical and spectral properties of both samples were a complete match (Scheme 3). To the best of our knowledge, this represents the first synthesis of a DAEH natural product by a bio-inspired cyclization reaction.

In summary, we have discovered conditions that promote a bioinspired oxidative cyclization of a simple diarylheptanoid, acerogenin G, to give a diaryletherheptanoid. This cyclization proceeds with concomitant oxidative hydroxylation of the diphenylether group and with esterification of a resident phenol. Saponification of the cyclization product gives pterocarine (**5**).

Scheme 3. Synthesis of (±)-pterocarine (5).

Please cite this article in press as: Salih M.Q., Beaudry C.M. Tetrahedron Lett. (2017), http://dx.doi.org/10.1016/j.tetlet.2017.04.015

ARTICLE IN PRESS

Acknowledgment

We gratefully acknowledge the National Science Foundation for support of our research group under Grant Number 1465287.

A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2017.04. 015

References and notes

- 1. (a) Zhu J, Islas-Gonzalez G, Bois-Choussy M. Org Prep Proc Int. 2000;32:505-546;
- (b) Claeson P. Tuchinda P. Reutrakul V. I Indian Chem Soc. 1994:71:509-521: (c) Liu HB, Cui CB, Cai B, et al. *Chin Chem Lett.* 2005;16:215–218. (a) Pattawong O, Salih MQ, Rosson NT, Beaudry CM, Cheong PHY. *Org Biomol*
- 2. Chem 2014.12.3303-3309.
- (b) Zhu Z-Q, Salih MQ, Fynn E, Bain AD, Beaudry CM. J Org Chem. 2013;78:2881-2896;
- (c) Salih MQ, Beaudry CM. Org Lett. 2012;14:4026–4029.
- 3. (a) For syntheses of DAEHs lacking stereocenters, see: Keserü GM, Dienes Z, Nógrádi M, Kajtár-Peredy M. J Org Chem. 1993;58:6725-6728; (b) Vermes B, Keserû GM, Mezey-Vándor G, Nógrádi M, Tóth G. Tetrahedron. 1993:49:4893-4900: (c) Keserü GM, Nógrádi M, Kajtár-Peredy M. Liebigs Ann Chem. 1994;361-364; (d) Kumar GDK, Natarajan A. Tetrahedron Lett. 2008;49:2103–2105;
- Islas Gonzalez G, Zhu J. J Org Chem. 1999;64:914-924;
- (f) Jeong B-S, Wang Q, Son J-K, Jahng Y. *Eur J Org Chem.* 2007;1338–1344.
 (a) Zhu Z-Q, Beaudry CM. *J Org Chem.* 2013;78:3336–3341;
- (b) Salih MQ, Beaudry CM. Org Lett. 2013;15:4540–4543. 5. For review of diaryl ether formation in natural products, see: Pitsinos EN, Vidali
- EA, Couladouros EA. Eur J Org Chem. 2011;1207–1222. Henley-Smith P, Whiting DA, Wood AF. J Chem Soc, Perkin Trans.
- 6. 1980;1:614-622.

- 7. Inoue T, Kenmochi N, Furukawa N, Fujita M. Phytochemistry. 1987;26:1409-1411.
- (a) Whiting DA, Wood AF. Tetrahedron Lett. 1978;26:2335-2338: 8 (b) Whiting DA, Wood AF. J Chem Soc, Perkin Trans. 1980;1:623-628.
- Q Hardouin C, Kelso MJ, Romero FA, et al. J Med Chem. 2007;50:3359-3368. (a) For examples, see: Xu Z, Peng Y, Ye T. Org Lett. 2003;5:2821-2824; 10.
- (b) Yang H, Hong Y-T, Kim S. Org Lett. 2007;9:2281–2284.
- 11 (a) Yoshino T, Sato I, Hirama M. Org Lett. 2012;14:4290-4292; (b) Kotoku N, Tsujita H, Hiramatsu A, Mori C, Koizumi N, Kobayashi M. Tetrahedron. 2005;61:7211-7218.
- 12. Quell T, Beiser N, Dyballa KM, Franke R, Waldvogel SR. Eur J Org Chem. 2016;4307-4310.
- Nishinaga A, Watanabe K, Matsuura T. Tetrahedron Lett. 1974;14:1291–1294.
 Reinhoudt DN, De Jong F, van de Vondervoort EM. Tetrahedron.
- 1981;37:1753-1762.
- Hwang D-R, Chu C-Y, Wang S-K, Uang B-J. Synlett. 1999;77-78.
- (a) Marques FA, Simonelli F, Oliveira ARM, Gohr GL, Leal PC. Tetrahedron Lett. 16. 1998;39:943-946;
 - (b) Albrecht M, Schneider M. Synthesis. 2000;1557-1560;
- (c) Deng Z-S, Zhao Y, He C-C, Jin J, He Y-M, Li J-X. Org Lett. 2008;10:3879–3882. 17. Brown CJ, Clark DE, Ollis WD, Veal PL. Proc Chem Soc. 1960;393-394.
- Feringa B, Wynberg H. J Org Chem. 1981;46:2547-2557. 18.
- Jacob III P, Callery PS, Shulgin AT, Castagnoli Jr N. J Org Chem. 19. 1976;41:3627-3629.
- (a) Feldman KS, Ensel SM, Minard RD. J Am Chem Soc. 1994;116:1742-1745; 20. (b) Hara H, Hashimoto F, Hoshino O, Umezawa B. Chem Pharm Bull. 1986;34:1946-1949;
- (c) Bringmann G, Tasler S. Tetrahedron. 2001;57:331-343.
- (a) Schill G, Logemann E, Dietrich B, Loewer H, Fritz H. Synthesis. 21. 1979;695-697; (b) Dallacker F, Maier FD, Morcinek R, Rabie A, Van Loo R. Chem Ber.
- 1980;113:1320-1327. 22. PbO₂ has been used for oxidation of phenols to quinones. See: Omura K.
- Synthesis. 1998;1145-1148. 23. Attempts to isolate the remainder of the mass balance of the reaction were
- unsuccessful.
- For review of cyclophane natural products and their syntheses, see: Gulder T, Baran PS. Nat Prod Rep. 2012;29:899.