January 1985 Communications 83 thioureas 3 and 4, respectively, with N-chlorosuccinimide, in almost quantitative yields. The substituted thioureas 3 and 4 which are stable and isolable, have been prepared in situ by the reaction of phenyl isothiocyanate with the corresponding amidines 1 and 2. The method has also been extended to the synthesis of 2-naphthyl-3-phenyl-5-phenylimino- Δ^4 -1,2,4-thiadiazoline (7) and 2-naphthyl-3-benzyl-5-phenylimino- Δ^4 -1,2,4-thiadiazoline (8). ## One-Pot Synthesis of 2-Aryl-3-phenyl(benzyl)-5-phenylimino- Δ^4 -1,2,4-thiadiazolines using N-Chlorosuccinimide J.P. CHETIA, S.N. MAZUMDER, M.P. MAHAJAN* Department of Chemistry, North-Eastern Hill University Shillong 793003, Meghalaya, India A number of methods have been reported concerning the synthesis of 3,5-disubstituted 1,2,4-thiadiazoles and almost all of them have been utilised with varying degrees of success¹⁻⁴. Oxidative cyclisation of the readily accessible amidinothioureas has been known to be the general route for the synthesis of 3,5-disubstituted 1,2,4-thiadiazoles and best yields have been reported with bromine. The overall yields varied between 40-64 % considering the amount of amidine used in the reaction⁵. It has also been reported that the monosubstituted amino group (e.g. anilino) in the amidinothiourea can also participate in cyclisation⁶, as shown by the ready oxidation of 1-(N,N'-diphenylamidino)-3-phenylthiourea, but, in this case, the product obtained was 2-guanidinobenzothiazole. It was thus thought worthwhile to perform the oxidation of N-arylbenzimidoyl-N'-phenylthioureas 3 and N-arylphenylacetimidoyl-N'-phenylthioureas 4 in order to investigate the products formed in these cases. Thus, we report here an efficient one-pot synthesis of the previously unknown 2-aryl-3-phenyl-5-phenylimino- Λ^4 -1,2,4-thiadiazolines **5** and 2-aryl-3-benzyl-5-phenylimino- Λ^4 -1,2,4-thiadiazolines **6** by the oxidation of substituted The differentiation between (E)- or (Z)-forms of thiadiazolines 5-8, on the basis of traditional techniques like low temperature ¹H-N.M.R. will perhaps be difficult, since only minor changes are expected in the chemical shifts of only the phenyl protons. However, on the basis of stereochemical studies for N-arylimines^{7,8}, where the phenyl group was shown to be anti- to the larger functional groups attached to the carbon atom of the imine, the phenyl group in thiadiazolines 5-8 is probably anti- to bigger sulfur atom. The identities of the 1,2,4-thiadiazolines 5-8 have been established on the basis of microanalyses and spectral data (Table). It may be worthwhile to mention here that, on using bromine and N-bromosuccinimide as oxidising agents, the T.L.C. of the reaction mixture showed two spots of almost equal intensities, one corresponding to the 1,2,4-thiadiazoline and the other may be due to the 2-guanidinobenzothiazole (9). The N-arylbenzamidines, N-arylphenylacetamidines were prepared by the reported method⁹. 84 Communications Synthesis Table. Compounds 5-8 prepared | Product No. ^a R ¹ | | R^2 | Yield
[%] | m.p.
[°C] ^b | Molecular Formula ^c | 1 H-N.M.R. (CDCl $_{3}$ /TMS) d δ [ppm] | |---|---|--------------------|--------------|---------------------------|--|---| | 5a | C ₆ H ₅ | Н | 90 | 183-184° | C ₂₀ H ₁₅ N ₃ S (329.4) | 7.2 (m, H _{arom}) | | 5b | C_6H_5 | 2-CH ₃ | 98 | 178180° | $C_{21}H_{17}N_3S$ (343.5) | 1.96 (s, 3H, CH ₃); 7.21 (m, 14H _{arom}) | | 5c | C ₆ H ₅ | 4-CH ₃ | 91 | 187~189° | $C_{23}^{21}H_{17}N_3S$ (343.5) | 1.85 (s, 3H, CH ₃); 7.25 (m, 14H _{arom}) | | 5d | C_6H_5 | 2-Cl | 95 | 180-182° | $C_{20}^{21}H_{14}CIN_3S$ (363.9) | 7.3 (m, H _{arom}) | | 5e | $C_6^{\circ}H_5^{\circ}$ | 4-Cl | 96 | 184~186° | $C_{20}^{20}H_{14}^{14}CIN_3S$ (363.9) | 7.2 (m, H _{arom}) | | 5f | C_6H_5 | 4-Br | 95 | 184185° | $C_{20}^{20}H_{14}BrN_3S$ (408.3) | $7.1 \text{ (m, H}_{arom})$ | | 5g | C_6H_5 | 2-OCH ₃ | 95 | 188189° | $C_{21}H_{17}N_3OS$ (359.5) | 3.55 (s, 3H, OCH ₃); 7.1 (m, 14H _{arom}) | | 6 b | CH ₂ C ₆ H ₅ | 2-CH ₃ | 95 | 160-161° | C ₂₁ H ₁₉ N ₃ S (357.5) | 1.95 (s, 3 H, CH ₃); 3.6 (s, 2 H, CH ₂); 7.2 (m, 14 H _{arom}) | | 6c | $CH_2-C_6H_5$ | 4-CH ₃ | 95 | 153-155° | $C_{21}H_{19}N_3S$ (357.5) | 1.88 (s, 3H, CH ₃); 3.6 (s, 2H, CH ₂)
7.15 (m, 14H _{arom}) | | 6d | $CH_2-C_6H_5$ | 2-Cl | 92 | 153155° | C ₂₁ H ₁₆ ClN ₃ S (376.9) | 3.5 (s, 2H, CH ₂); 7.2 (m, 14H _{atom}) | | 6e | $CH_2-C_6H_5$ | 4-Cl | 98 | 154-156° | $C_{21}H_{16}CIN_3S$ (376.9) | 3.7 (s, 2H, CH2); 7.2 (m, 14Hatom) | | 6f | $CH_2-C_6H_5$ | 4-Br | 96 | 152-154° | $C_{21}H_{16}BrN_3S$ (422.3) | $3.5 \text{ (s, 2H, CH2); } 7.2 \text{ (m, 14H}_{atom)}$ | | 7 | | | 95 | 190~192° | $C_{24}H_{17}N_3S^3(379.5)$ | 7.3 (m, H _{arom}) | | 8 | - | r dan | 94 | 159-161° | $C_{25}^{24}H_{19}N_3S$ (393.5) | 3.6 (s, 2H, CH ₂); 7.2 (m, 17H _{a10m}) | ^a All the compounds reported in the Table have the following common I.R. and U.V. data which are comparable with the reported values I.R. (KBr): v = 3060 (C—H), 1595, 1550 and 1485 cm⁻¹ (C=N, C=C); recorded on a Perkin-Elmer Model 297 infrared spectro photometer. U.V. (CH₃OH): $\lambda_{\text{nax}} = 234$ nm (log $\varepsilon = 4.74$); 274 nm (log $\varepsilon = 4.68$); recorded on a Beckmann-26 spectrophotometer. ## 2-Aryl-3-phenyl(benzyl)-5-phenylimino- A^4 -1,2,4-thiadiazolines 5-8; General Procedure: A solution of N-arylamidine I (0.62 mol) and phenyl isothiocyanate (2.7 g, 0.02 mol) in dry chlorofo m (20 ml) is refluxed till T.L.C. showed the disappearence of starting materials (\sim 6 h). The mixture is then cooled to room temperature, N-chlorosuccinimide (2.19 g, 0.02 mol) is added, and the mixture is stirred at room temperature for 1 h. The mixture is washed with saturated solution of sodium hydrogen carbonate (2 \times 25 ml) and water (2 \times 50 ml). The chloroform layer is dried with anhydrous sodium sulphate. The solid so obtained after removal of chloroform is then recrystallised from benzene/hexane (1:1). Received: January 25, 1984 (Revised form: May 28, 1984) b Uncorrected. ^c Satisfactory microanalyses obtained: $C \pm 0.16$, $H \pm 0.02$, $N \pm 0.03$. d Recorded on a Varian EM-390 90 MHz spectrometer. ^{*} Address for correspondence. ¹ J. Goerdeler, Chem. Ber. 52, 9920 (1958); 53, 4306 (1959). F. Kurzer, P.M. Sanderson, J. Chem. Soc. 1963, 3363, and references cited therein. ³ C. Christopherson, T. Otterson, K. Sett, S. Treppendahl, J. Am. Chem. Soc. 97, 5239 (1975). ⁴ T. Kinoshita, S. Sato, C. Tamura, Bull. Chem. Soc. Jpn. 49, 2236 (1976). ⁵ F. Kurzer, J. Chem. Soc. **1955**, 1. ⁶ F. Kurzer, P.M. Sanderson, J. Chem. Soc. 1960, 3240. ⁷ D. Y. Curtain, E. J. Grubbs, C. G. McCarty, J. Am. Chem. Soc. 88, 2775 (1966). ⁸ F. Vögtle, A. Mannschreck, H. A. Staab, Liebigs Ann. Chem. 708, 51 (1967). S. Chaudhury, A. Debroy, M. P. Mahajan, Can. J. Chem. 60, 1122 (1982), and references cited therein.