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ABSTRACT: Regioselective and stereoselective synthesis of trisubstituted
alkenyl silanes via hydrosilylation is challenging. Herein, we report the first
β-anti-selective addition of silanes to thioalkynes with B(C6F5)3 as the
catalyst. The reaction shows broad substrate scope. The products were
proven to be useful intermediates to other trisubstituted alkenyl silanes by
Ni-catalyzed stereoretentive cross-coupling reactions of the C−S bond. A
mechanism study suggests that nucleophilic attack of thioalkyne to an
activated silylium intermediate might be the rate-determining step.

Organosilicon compounds are widely used in synthetic
chemistry and material science.1 Functionalized trisub-

stituted alkenyl silanes are of particular importance because the
functional group can be used to make new chemical bonds.
Catalytic hydrosilylation of internal alkynes is the most atom-
economical method to prepare these alkenyl silanes (Scheme
1a).2,3 However, there are two challenges in this chemistry: (1)
control of the regioselectivity and stereoselectivity of the
hydrosilylation step and (2) stereoselective transformation of
the C−FG bond of the product to another useful bond.3

Thioalkynes are stable and readily available compounds. In this
context, we envisioned that the selective hydrosilylation of
internal thioalkynes will provide silyl-substituted alkenyl sulfide
as versatile synthetic building blocks, if both the C−S and C−
Si bonds can be further functionalized (Scheme 1b).1−4

However, it is challenging to control regio- and/or
stereoselectivity of the hydrosilylation of internal thioalkynes.5

Previous hydrosilylation of internal thioalkynes all employed
transition metal complexes as catalysts, and only α-syn addition
into the triple bond was achieved in high selectivity. In 1988,
Isobe and co-workers reported Pt-catalyzed α-syn-selective
addition of tertiary silanes into the triple bonds of internal
thioalkynes, and the products were converted to alkenyl
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Scheme 1. Background of Synthesis of Trisubstituted
Alkenyl Silanes via Hydrosilylation and Reaction Design

Table 1. Investigation of Reaction Conditionsa

entry catalyst conv. (%) yield (%) Z/E β/α

1 AlCl3 <2 <1 / /
2b AlCl3 40 10 >99:1 >99:1
3 BF3·Et2O <2 <1 / /
4 BCl3 <2 <1 / /
5 BBr3 <2 <1 / /
6 Zn(OTf)2 <2 <1 / /
7 CuCl2 <2 <1 / /
8 B(C6F5)3 >99 85 >99:1 >99:1
9 / <2 <1 / /

aConditions: under N2 protection, catalyst was added into the
mixture of 1a and 2a in dry DCM at rt, and then the mixture was
heated at 60 °C for 12 h; the conversion of 1 and the yield and
selectivity of 3a were determined by 1H NMR with BrCH2CH2Br as
an internal standard. b120 mol % of AlCl3 was used, instead of 1.5 mol
%.
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sulfones for conjugate addition reactions.5a,b In 1999, the same
group achieved α-syn-selective hydrosilylation reactions with a
Co catalyst.5c−f In 2015, the Sun, Wu, Chung, and Zhang
groups disclosed a Ru-catalyzed hydrosilylation system, which
also afforded α-syn selectivity.5g Both the sulfenyl group and
the bulky silane (TMSO)3SiH proved crucial to high regio-
and stereoselectivity.5g Later, the Sun, Wu, and Zhang groups

extended their methodology to an Ir-catalyzed system, in
which α-syn selectivity was again obtained with tertiary
silanes.5h To the best of our knowledge, there is no β-anti-
selective hydrosilylation of internal thioalkynes. We are not
aware of selective hydrosilylation of thioalkynes with primary
and secondary silanes as agents. This is probably because it is
challenging to inhibit the reaction of the hydrosilylation

Scheme 2. Scope of β-anti-Selective Hydrosilylation of Thioalkynes with Silanes
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product with another alkyne substrate. In 2017, Chang and co-
workers reported a β-anti-selective hydrosilylation of internal
yamides, but no further transformation of the C−N bond was
disclosed.6 Herein, we show that B(C6F5)3 can efficiently
catalyze the reaction of primary, secondary, and tertiary silanes
with thioalkynes, affording silyl-substituted alkenyl sulfides
with complete β-anti selectivity (Scheme 1b). The metal-free
process has broad substrate scope with high functional group
tolerance and can be performed under mild conditions.
Stereoretentive cross coupling of the C−S bond under Ni
catalysis demonstrated the unique synthetic potential com-
pared with the C−N bond.
Initially, thioalkyne 1a and secondary silane Ph2SiH2 (2a, 1.5

equiv) were employed as the model substrates (Table 1). We
chose AlCl3 as the catalyst for initial evaluation in view of its
reported ability to promote hydrosilylation of electron-neutral
alkynes.7 However, the reaction with 1.5 mol % of AlCl3 in
DCM at 60 °C did not afford any 3a after 12 h (Table 1, entry
1). After increasing the amount of AlCl3 to 120 mol %, there
was only 40% conversion of 1a, and 3a was isolated in 10%
yield, >99:1 β/α, and >99:1 Z/E (entry 2). This excellent
regioselectivity is in contrast to the previous low β/α selectivity
in electron-neutral internal alkynes.7a The low yield of the
AlCl3 system led us to investigate other Lewis acids.8 We found
that BF3·Et2O, BCl3, BBr3, Zn(OTf)2, and CuCl2 did not give
any of the desired product (entries 3−7). B(C6F5)3 was found
to be optimal, and the yield of 3a increased to 85%, with
complete β-anti-selectivity (entry 8). Without B(C6F5)3, 3a
was not formed (entry 9).

With the optimized conditions in hand, we explored the
scope of the hydrosilylation of thioalkynes with different
silanes (Scheme 2). A wide range of silanes, including primary,
secondary, and tertiary silanes as well as a variety of thioalkynes
reacted efficiently and with high regio- and stereoselectivity.
Many functional groups, such as F, Cl, Br, CF3, OPh, or an
alkenyl unit, are tolerated. The more hindered silanes required
higher catalyst loading and/or reagent loading at 60 °C, while
primary silanes reacted readily at room temperature. Double
hydrosilylation of thioakyne 1a with PhSiH3 was achieved in
one pot (3va, 76% yield, >98% regioselectivity). The method is
scalable: we prepared 1.5 g of 3a and 2.8 g of 3y in 80% yield,
>99:1 β/α, >99:1 Z/E and 82% yield, >99:1 β/α, >99:1 Z/E,
respectively. Unfortunately, when HSi(OMe)3, HSiMe(OEt)2,
and HSiMe2(OEt) were used as silane reagents, no desired
hydrosilylation product was found. Various thioalkynes can

Scheme 3. Nickel-Catalyzed Cross Coupling of Silyl-
Substituted Alkenyl Sulfide 3y with Various Grignard
Reagents

Scheme 4. Transformations of the Si−H Bond, C−Si Bond,
and C−S Bond

Scheme 5. Mechanism Study

Scheme 6. Proposed Mechanism
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participate in the hydrosilylation reactions, affording 3ac−3ap
in 45−94% yield, with excellent selectivity. However, tBu- and
Ph-substituted thioalkynes did not work under current
conditions, which might be because of the steric hindrance
of these substituents. It is worthy of note that the methoxy
group can serve as a removable directing group, and seven-
membered silacyclic 3as was prepared in 85% yield by
demethylative silacyclization.
Next, we explored whether a sulfide-substituted alkenyl

silane can be converted into other trisubstituted alkenyl silanes
(Scheme 3). Although cross-coupling of alkenyl halides has
been well studied,9 the investigation of alkenyl sulfide in cross-
coupling chemistry is considerably less developed.4,10 Thus, on
the basis of the seminal reports by Kumada and Takei,10a,b we
investigated the cross-coupling of silyl-substituted Z-alkenyl
sulfide with Grignard reagents. We were able to react a variety
of aryl Grignard reagents with 3y in the presence of
Ni(dppe)Cl2 (5.0 mol %) to generate the corresponding
alkenyl silanes in 55−80% yield; all transformations were
entirely stereoretentive. Moreover, cyclopropyl-substituted 4g
was obtained in 75% yield and as a single isomer. These
stereodefined trisubstituted alkenyl silanes are difficult to
synthesize by other methods. In addition, by using MeMgBr,
we were able to synthesize 4h in 80% yield and a 92:8 Z/E
ratio. It is encouraging that the steric bulky silyl group did not
inhibit the cross-coupling reactions.
We then investigated the selective transformation of the silyl

moiety (Scheme 4). Protodesilylation reaction of compound
3a proceeded smoothly, affording alkenyl sulfide 5 in 85%
yield, with the C−S bond unchanged. The Si−H bond of
compound 3a was converted to the Si−OMe bond, and alkenyl
silane 6 was synthesized in 85% yield. Pd-catalyzed Hiyama
coupling afforded trisubstituted alkenyl sulfide 7 in 68% yield.
An ensuing bisphosphine−Ni-catalyzed cross coupling deliv-
ered trisubstituted alkenes 8 (72% yield) and 9 (70% yield);
such entities cannot be easily accessed by alternative
methods.11 It is noteworthy that an alkene’s stereochemical
identity was preserved in the above sequence of reactions.
We then focused on gaining some insight regarding the

hydrosilylation process. The ability of B(C6F5)3 to activate a
Si−H bond is well appreciated and has been proposed in the
context of catalytic hydrosilylation.12 However, B(C6F5)3 can
also react with thioalkyne to generate carboboration product
10 (Scheme 5a).13 The identity of 10 was determined through
X-ray crystallography. The question then was: might the
carboboration product be the actual catalyst in the present set
of hydrosilylation reactions? To clarify, we performed the
following reaction: mixing thioalkyne 1a with 1.5 mol % of
B(C6F5)3 in CH2Cl2 for 10 h at 60 °C, and then 1.5 equiv of
Ph2SiH2 was added. The resulting mixture was heated at 60 °C
for another 12 h. Only 8% conversion of 1a and 7% yield of 3a
were observed (1H NMR analysis; Scheme 5b). However,
when B(C6F5)3 was added after mixing compound 1a and
Ph2SiH2, there was complete conversion, and 3a was isolated
in 85% yield, >99:1 Z/E ratio, and >99:1 β/α selectivity
(Scheme 5c). These findings indicate that B(C6F5)3 is likely
the catalyst.14

To establish which step is rate-determining, we carried out
reactions with deuterium-labeled substrates. We found H−D
scrambling to be efficient in the reaction of Ph2SiHD with
B(C6F5)3 at room temperature (Scheme 5d). The KIE value of
0.99 suggests that Si−H bond clevage is not kinetically
significant (Scheme 5e). These data led us to the mechanism

proposed in Scheme 6. Silylium intermediate II, generated
through reaction between a silane and B(C6F5)3, can be in
equilibrium with I, in the presence of Lewis basic thioalkyne;12

addition of thioalkyne to II then gives ketene sulfonium species
IV, which may be converted to the final product after reaction
with boron hydride III. The competition reaction with
electronically distinct thioalkynes (Scheme 5f) reveals that an
electron-withdrawing group leads to reduced reaction rates,
implying that the step involving a thioalkyne and II (step 1)
might be rate-determining. The high β-selectivity might be
explained by the polarization property of thioalkynes. The anti-
addition selectivity might be explained by the lower steric
pressure in pathway a. However, the following possibility
cannot be ruled out: sulfonium species IV and boron hydride
III might be generated from intermediate V, which might be
formed from the reaction between thioalkyne and complex I.
In summary, we have developed the first β-anti-selective

addition of silanes to thioalkynes with B(C6F5)3 as the catalyst,
affording trisubstituted alkenyl silanes in excellent regio- and
stereoselectivity. The reaction shows broad substrate scope and
functional group tolerance. The products were proved to be
useful intermediates to other trisubstituted alkenyl silanes by
Ni-catalyzed stereoretentive cross-coupling reactions of the C−
S bond. Mechanism study of the hydrosilylation reaction
suggests that nucleophilic attack of thioalkyne to the activated
silylium intermediate might be the rate-determining step, and
Si−H bond cleavage is not involved in the rate-determining
step.
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