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First Total Synthesis of Cytotoxic
Diarylheptanoids, Galeon, and Pterocarine

Qian Wang, Jong-Keun Son, and Yurngdong Jahng

College of Pharmacy, Yeungnam University, Gyeongsan, Korea

Abstract: The first total synthesis of cytotoxic diphenyl ether-type diarylheptanoids,

galeon and pterocarine, was described in which the Ullmann reaction was employed

at the final step for the diaryl ether formation of key intermediate, 1-(3-bromo-4-ben-

zyloxyphenyl)-7-(4-hydroxy-3-methoxyphenyl)heptan-3-one, assembled by a series of

cross-aldol condensation from 3-methoxy-4-benzyloxybenzaldehyde.

Keywords: aldol, cytotoxicity, diatrylheptanoid, galeon, pterocarine, Ullmann reaction

INTRODUCTION

Diarylheptanoids are a class of natural products containing the 1,7-diphenyl-

heptane skeleton and can be classified into three major groups: acyclics, cyclic

biphenyls ([7.0]-metacyclophanes), and cyclic diphenyl ethers (14-oxa-

[7.1]metaparacyclophanes).[1] Although linear diarylheptanoids and cyclic

biphenylheptanoids have been studied extensively on account of their

unique structures[2 – 5] and wide variety of biological properties,[6 – 19] studies

on diphenyl ether-type cyclic diarylheptanoids such as acerogenins

(1a–d),[20 – 26] galeon (1e),[27,28] and pterocarine (1f)[29] are mostly limited

to their isolation from natural sources. Their intriguing structures have led

to the establishment of a couple of strategic methods for the total

synthesis of 1a–d and their related acerosides.[30 – 32] However, there are

no reported synthetic pathways for 1e or 1f. The methods reported

previously from readily available compounds, however, are somewhat
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lengthy and are not suitable to apply to the synthesis of galeon and its related

diarylheptanoids.

Recent findings on the potent cytotoxic activity of 1e against selected

cancer cell lines[33] and the inhibitory activity to the cell cycle at the G0/G1

phase as well as the apoptosis inducing activity[29] of 1f spurred us to

devise a general and versatile synthetic method. This article described the

first total synthesis of 1e and 1f from readily available starting materials.

RESULTS AND DISCUSSION

The previous synthesis of acerogenin C and/or L employed two different

methodologies. One[30,31] used the SNAr reaction for ether formation and

the acetoacetate ester synthesis for constructing diarylheptanoid skeleton,

whereas the other[32] used the Ullmann reaction and the Wittig reaction,

respectively. Novelty of the present strategy for synthesizing 1e lies in the

preparation of a suitably substituted 1,7-diphenylheptane derivative (6) by a

series of cross-aldol condensation reactions and the formation of a diarylether

bond at the late stage of synthesis via the Ullmann reaction.

The prerequisite 4-benzyloxy-3-methoxycinnamaldehyde (2) was

prepared from commercially available 4-hydroxy-3-methoxybenzaldehyde

in quantitative yield.[34,35] The cross-aldol condensation of 2 with acetone

in the presence of 10% NaOH gave 3 in 93% yield, whereas such condensation

of unprotected 4-hydroxy-3-methoxy-cinnamaldehyde led to much a lower

yield. Catalytic hydrogenation of 3 under an H2 atmosphere at room tempera-

ture for 24 h not only the reduced double bonds but also removed the protect-

ing benzyl group to afford the corresponding 4 in quantitative yield, which was

then subjected to a second aldol condensation reaction with 3-bromo-4-benzy-

loxybenzaldehyde to give the linear diphenylheptenoid 5 in 85% yield. The

catalytic hydrogenation of 6 under an H2 atmosphere for 2.5 h reduced only

the double bond to afford the corresponding compound 6 as pale yellow oil

in 81% yield. It should be noted that the benzyl moiety in compound 6 can

be kept in protection by adjusting the reaction time.

Although several approaches to the formation of biaryl ethers have been

introduced,[36] the Ullmann procedure is the best in some cases.[37] Thus the

classical Ullmann condition i.e, using CuO/K2CO3
[38] as a catalyst was
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applied to compound 6 to yield the corresponding cyclic diphenylheptanoid,

4-benzylgaleon (7), in 52% yield. The cyclic structure of 7 was confirmed

by the characteristic high-field shift of the H-20 resonance in the 1H NMR

spectrum due to the anisotropic effect of the neighboring orthogonal

benzene ring (dH20 ¼ 5.55 in 7 vs. dH20 ¼ 7.32 in 6). The selective

cleavage of the benzyl ether by catalytic hydrogenation afforded the desired

galeon (1e) in quantitative yield, of which the spectral (1H and 13C NMR as

well as distortionless enhancement by polarization transfer (DEPT), infrared

(IR), and ultraviolet (UV) as well as the physical data were identical to

those reported in the literature.

The O-demethylation of 1e by a previously reported procedure[27]

afforded pterocarine (1f) in 88% yield. The physical and spectral data of the

synthetic substances were identical to those of the natural products.

In conclusion, a simple and practical synthetic procedure for preparing

diphenyl ether-type diarylheptanoid, galeon, was developed using the

Ullmann diaryl ether formation of linear diarylheptanoid, which was

prepared from readily available starting materials via a series of cross-aldol

condensation reactions. Studies on resolving each enantiomer and applying

this method to the synthesis of related diarylheptanoids, acerogenin C and

L, are currently in progress.
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EXPERIMENTAL

Melting points were determined using a Fischer-Jones melting-point apparatus

and are not corrected. IR spectra were obtained using a Perkin-Elmer 1330 spec-

trophotometer. NMR spectra were obtained using a Bruker-(250 spectrometer

250 MHz or 400 MHz for 1H NMR and 62.5 MHz or 100 MHz for 13C

NMR) and are reported as parts per million (ppm) from the internal standard

tetramethylsilane (TMS). Chemicals and solvents were commercial reagent

grade and used without further purification. Electrospray ionization (ESI)

mass spectrometry (MS) experiments were performed on a LCQ advantage-

trap mass spectrometer (Thermo Finnigan, San Jose, CA, USA). Elemental

analyses were taken on a Hewlett-Packard Model 185B elemental analyzer.

All the spectral data of the compounds prepared are consistent with their

structures.

6: Colorless oil (83%). IR (KBr) y 3520, 1710 cm21. 1H NMR (CDCl3,

250 MHz) d 7.57–7.30 (m, 6H), 7.00 (dd, J ¼ 8.2, 2.0 Hz, 1H), 6.80

(d, J ¼ 8.8 Hz, 2H), 6.64 (s, 1H, H20), 6.63 (dd, J ¼ 8.5, 1.5 Hz, 1H), 5.48

(s, 1H, OH, D2O exchangeable), 5.10 (s, 2H, Ph-CH2-), 3.85 (s, 3H, OCH3),

2.78 (t, J ¼ 7.3 Hz, 2H), 2.65 (t, J ¼ 7.0 Hz, 2H), 2.51 (t, J ¼ 7.0 Hz, 2H),

2.40 (t, J ¼ 7.3 Hz, 2H), 1.63–1.51 (m, 4H). 13C NMR (CDCl3, 62.5 MHz)

d 209.78, 153.26, 146.25, 143.54, 136.54, 135.09, 134.05, 133.01, 128.49,

128.22, 127.83, 126.92, 120.77, 114.08, 113.83, 112.27, 110.85, 70.80,

55.78, 44.04, 42.79, 35.33, 31.16, 28.40, 23.27. MS (ESI) calcd. for

C27H29O4Brþ[MþHþ] 498, found 498.

7 (4-Benzylgaleon): Pale yellow needles (52%); mp 1138C. IR (KBr) y 1714,

1518 cm21. 1H NMR (CDCl3, 250 MHz) d 7.48 (overlapped d, J ¼ 7.0 Hz,

2H), 7.38–7.27 (m, 3H), 7.03 (d, J ¼ 8.5 Hz, 1H), 6.87–6.84 (m, 2H), 6.76

(d, J ¼ 8.3 Hz, 1H), 6.55 (dd, J ¼ 8.0, 2.0 Hz, 1H), 5.55 (d, J ¼ 1.9 Hz,

1H), 5.38–5.18 (AB quartet, 2H), 3.72 (s, 3H), 2.97 (dd, J ¼ 15.5, 8.2 Hz,

1H), 2.83 (dd, J ¼ 13.0, 5.3 Hz, 1H), 2.71–2.58 (m, 2H), 2.41–2.20

(m, 2H), 2.02 (t, J ¼ 11.6 Hz, 1H), 2.03–1.75 (m, 1H), 1.69–1.50 (m, 4H).
13C NMR (CDCl3, 62.5 MHz) d 210.03, 152.28, 150.23, 145.32, 142.80,

139.67, 137.55, 134.67, 128.43, 127.67, 127.38, 124.25, 122.00, 121.10,

115.66, 115.25, 112.63, 71.68, 56.12, 46.10, 40.97, 36.01, 27.40, 27.03,

19.08. MS (ESI) calcd. for C27H28O4
þ[MþHþ] 417, found 417.

1e (Galeon): White needles (99%); mp 178–1808C (lit.[27] mp 179–1818C,

lit.[28] mp 178–1808C). IR (KBr) y 3387, 1703, 1517 cm21. 1H NMR

(CDCl3, 250 MHz) d 6.97 (d, J ¼ 8.4 Hz, H18), 6.84 (d, J ¼ 1.9 Hz, H16),

6.83 (d, J ¼ 8.3 Hz, H19), 6.80 (d, J ¼ 8.0 Hz, H5), 6.57 (d, J ¼ 8.3 Hz,

H6), 5.79 (s, OH, D2O exchangeable), 5.53 (d, J ¼ 1.9 Hz, H20), 3.69

(s, 3H, OCH3), 2.94 (dd, J ¼ 16.2, 9.0 Hz, H8A), 2.84–2.55 (m, 3H, 2H14,

H8B), 2.38–2.16 (m, 2H, H9), 2.02–1.85 (m, 1H, H11A), 1.76–1.71 (m, 1H,
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H13A), 1.54–1.49 (m, 4H, H11B, 2H12 & H13B). 13C NMR (CDCl3, 62.5 MHz)

d 210.29 (C55O), 152.07 (C17), 147.21 (C3), 143.04 (C4), 142.70 (C1),

140.03 (C15), 133.20 (C7), 123.95 (C18, CH), 121.94 (C19, CH), 121.86

(C6, CH), 115.00 (C5, CH), 114.91 (C16, CH), 112.18 (C20, CH), 56.00

(OCH3), 46.29 (C11, CH2), 41.25 (C9, CH2), 35.89 (C14, CH2), 27.33

(C13, CH2), 27.25 (C8, CH2), 18.98 (C12, CH2). MS (ESI) calcd. for

C20H22Oþ4 [MþHþ] 327, found 327.

1f (Pterocarine): White powder (88%), mp 1758C. IR (KBr) y 3339, 1696,

1590, 1516 cm21. 1H NMR (CDCl3, 250 MHz) d 6.93 (d, J ¼ 1.6 Hz, H16),

6.87 (d, J ¼ 8.0 Hz, H18), 6.82 (d, J ¼ 8.0, 1.2 Hz, H5), 6.77 (d, J ¼ 8.0 Hz,

H19), 6.62 (d, J ¼ 8.0, 1.0 Hz, H6), 5.62 (br. s, 2H, C4-OH, C17-OH, D2O

exchangeable), 5.54 (d, J ¼ 1.0 Hz, H20), 2.86–2.82 (m, 2H, H8), 2.72–2.65

(m, 2H, 2H14), 2.38–2.16 (m, 2H, H9), 1.89–1.82 (m, 2H, 2H11), 1.67–1.63

(m, 2H, 2H13), 1.58–1.54 (m, 2H12). 13C NMR (CDCl3, 62.5 MHz) d

210.48, 148.76, 146.72, 142.84, 140.63, 140.46, 133.97, 123.36, 122.94,

122.81, 117.81, 115.54, 112.51, 46.46, 41.07, 35.60, 27.26, 27.17, 18.95. MS

(ESI) calcd. for C19H20Oþ4 [MþHþ] 313, found 313.
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