

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 16 (2006) 5414-5419

Synthesis and biological evaluation of heterocycle containing adamantane 11β-HSD1 inhibitors

Vince S. C. Yeh,* Jyoti R. Patel,* Hong Yong, Ravi Kurukulasuriya, Steven Fung, Katina Monzon, William Chiou, Jiahong Wang, Deanne Stolarik, Hovis Imade, David Beno, Michael Brune, Peer Jacobson, Hing Sham and J. T. Link

Metabolic Disease Research, Abbott Laboratories, 100 Abbott Park Road, AP-10,304B, Abbott Park, IL 60064, USA

Received 30 May 2006; revised 15 July 2006; accepted 17 July 2006 Available online 8 August 2006

Abstract—A series of metabolically stable adamantane amide 11β-HSD1 inhibitors have been synthesized and biologically evaluated. These compounds exhibit excellent HSD1 potency and HSD2 selectivity and good pharmacokinetic and pharmacodynamic profiles.

© 2006 Elsevier Ltd. All rights reserved.

11^β-Hydroxysteroid dehydrogenase type 1 (11^β-HSD1) has attracted significant attention from the pharmaceutical research community as a target for the treatment of metabolic syndrome.¹ This endoplasmic reticulum-associated enzyme converts the glucocorticoid receptor (GR) inactive cortisone (dehydrocorticosterone in rodents) into the GR active hormone cortisol (corticosterone in rodents). In the liver, cortisol stimulates gluconeogenesis through upregulation of enzymes such as phosphoenolpyruvate carboxykinase and glucose 6-phosphatase, and in adipose tissue, cortisol promotes adipogenesis and lipolysis.² A related enzyme, 11β-HSD2, catalyzes the reverse reaction which in tissues like kidney protects the mineralocorticoid receptor from activation by cortisol.³ The current hypothesis is that a small molecule therapeutic that selectively targets 11β -HSD1 can be a viable strategy for the treatment of metabolic syndrome.

We have identified adamantane amides exemplified by 1^4 from initial hit to lead work, which are potent inhibitors of human and mouse 11 β -HSD1 with selectivity over 11 β -HSD2 (Fig. 1). Although 1 has an excellent in vitro activity against the targeted enzymes, it has a poor pharmacokinetic (PK) profile in mice. This is due to metabolism of the phenoxy side chain,

Figure 1. Adamantane amide 11β-HSD inhibitor.

as determined by in vitro mouse liver microsomal stability studies, and primary amide hydrolysis in mouse serum. The primary carboxamide on the adamantane contributes to its potent activity as well as the metabolic stability of the adamantane head group. Easily accessible secondary and tertiary adamantane carboxamide analogs were either not active or lacked acceptable PK profiles. Moreover, analogs related to 1 that contain non-polar aromatic phenoxy groups have limited metabolic stability.

Our goal is to discover compounds that will provide long enough coverage for BID dosing for in vivo efficacy studies in rodents. Hence, desirable compounds should have a PK profile with greater bioavailability and lower clearance. We attempted to address these challenges via

Keywords: 11β-HSD1; Adamantane amide; Heterocycles; Metabolic syndrome; Metabolic stability.

^{*}Corresponding authors. Fax: +1 847 938 1674; e-mail addresses: vince.yeh@abbott.com; jyoti.patel@abbott.com

two concerted approaches: (1) identify hydrolytically stable carboxamide bioisosteres that maintain high potency and selectivity; (2) prepare compounds containing more polar heteroaromatic side chains which exhibit metabolic stability and improvements in PK profile. In this paper, we report our initial results.

Scheme 1. Reagents and conditions: (a) KOTMS, THF, rt; (b) i—LiAlH₄, THF, 0 °C; ii—Dess-Martin periodinane, CH₂Cl₂; (c) i—acetyleneMgBr, THF, 0 °C; ii—Dess-Martin periodinane, CH₂Cl₂; (d) i—EDCI, HOBT, *i*-Pr₂NEt, then NH₃; ii—TFAA, Et₃N, CH₂Cl₂, 0 °C.

Scheme 2. Reagents and conditions: (a) 3, 2-amino-malononitrile, EDCI, pyr, rt; (b) i—3, aminoguanidine, EDCI, Et₃N, DMF, rt; ii—tol, 100 °C; (c) 4, glyoxal, NH₃, MeOH, rt; (d) 6, NH₂OH, DBU, DMF, 80 °C; (e) 5, NH₂OH, DBU, DMSO, 100 °C; (f) CDI, DBU, CH₃CN, rt; (g) 4, TOSMIC, KOtBu, DME, MeOH; (h) ZnBr₂, NaN₃, H₂O, 150 °C; (i) 1 N HCl, reflux; (j) 4, Ph₃P=CHCO₂Me, CH₂Cl₂; (k) i—H₂, Pd/C, MeOH; ii—LiOH, MeOH/H₂O.

Ester 2 was converted into compounds 3–6 using standard functional group transformations (Scheme 1). Compounds 3–6 served as starting materials for the syntheses of a number heterocycle bioisosteres of the primary amide.

Acid **3** was converted into amino oxazole 7^5 and amino triazole **8** (see Scheme 2 and Table 1). Aldehyde **4** was transformed into imidazole **9**. Isoxazole **10** was derived from alkynone **6**. Addition of hydroxylamine to cyanide **5** gave hydroxyamidine **11**, which was then converted into **12**. In addition, we also explored the possibility of extending the polar group 1 or 2 carbons away from the adamantane head group. The syntheses of homologated analogs utilized either TOSMIC or stabilized Wittig reagents on aldehyde **4** (Scheme 2), followed by tetrazole synthesis (**14**) or hydrolysis to give the corresponding acids **13** and **15**.

Modification of the side chain was achieved by replacing the phenoxy group of 1 by a pyridyl group. The heteroaromatic group can either be linked through an oxygen spacer, such as 22, or be directly attached to the quaternary carbon bearing the *gem*-dimethyl groups, such as

Table 1. In vitro inhibition and metabolic stability data for 6-14

	CI
A N X	′ Ĺ J
	0
0	

Compound	R		Microsomal stability ^b		
		h-HSD1/h-HSD2	m-HSD1/m-HSD2	h-HSD1 HEK	(% remaining)
7	NC H ₂ N O	146/>100,000	205 / 50,000	306	25
8	$H_2N \xrightarrow{N-N}_{N}$	35/55,000	53/>100,000	476	41
9	∠ N N H	10/11,000	11/100,000	110	3
10	N-O	105/15,000	71/15,000	31	30
11	HO N H ₂ N	39/100,000	26/>100,000	124	64
12		358/35,000	101/100,000	532	Not determined
13	HO ₂ C	45/52,000	92/20,700	82	94
14	N-N N-N H	41/>100,000	87/7,000	119	79
15	H ₂ OC	89/100,000	74/28,000	455	78

^a Values are means of two experiments.

^b% remaining after a 30 min incubation with mouse liver microsome.

27 (Table 2). The syntheses of these side chains are depicted in Schemes 3 and 4.

The *O*-linked hetroaryl analogs were prepared by nucleophilic aromatic substitution of a chloropyridine by hydroxy ester **16** followed by the attachment of adamantane **21**⁴ and conversion to primary carboxamide (Scheme 3). Pyridyl bromide **22** was further elaborated via copper (I) catalyzed C–N coupling⁶ to give **24–26**.

The C-linked analogs such as 28 were synthesized by a palladium catalyzed coupling⁷ of silyl ketene acetal 19 with a pyridyl bromide such as 18 followed by acylation with adamantane 21 and conversion to the corresponding carboxamide by similar methods as those described for 22 (Scheme 4). The amino substituents of 28 and 29 were attached by nucleophilic substitution reactions.

These compounds were tested against both human and mouse 11 β -HSD1 and 11 β -HSD2 enzymes as well as a cell based assay with 11 β -HSD1 overexpressed in human embryonic kidney cells (HEK).⁸ In addition, metabolic stability of these compounds was determined using mouse liver microsomal incubation studies.

Table 2. In vitro inhibition and metabolic stability data for 22-29

<u> </u>	Compound \mathbf{Y} IC ^a (pM) Microscomplicitability ^b (0/ remaining				
Compound	Х	$IC_{50}^{a}(nM)$		Microsomal stability" (% remaining)	
		h-HSD1/h-HSD2	m-HSD1/m-HSD2	h-HSD1 HEK*	
22	O N Br	6/49,000	4/>100,000	18	87
23	O N CN	28/>100,000	36/>100,000	373	90
24		44/>100,000	51/>100,000	444	89
25		185/>100,000	519/>100,000	>10,000	ND
26	O N NMe N−N	5/>100,000	11/>100,000	38	83
27		14/>100,000	65/15,000	165	100
28		47/>100,000	59/>100,000	169	87
29	N N	29/>100,000	310/>100,000	246	83

ND, not determined as in Table 1.

^a Values are means of two experiments.

^b% remaining after a 30 min incubation with mouse liver microsomes.

Scheme 3. Reagents and conditions: (a) NaH, 5-bromo-2-fluoropyridine, THF/DMPU rt; (b) KOTMS, THF, rt; (c) 17, 21, HATU, *i*-Pr₂NEt, CH₂Cl₂; (d) *i*—KOTMS, THF; *ii*—EDCI, HOBT, NH₃, CH₂Cl₂; (e) 22, morpholine, CuI, proline, K₂CO₃, DMSO, 120 °C.

Scheme 4. Reagents and conditions: (a) 19, ZnF_2 , $Pd_2(dba)_3$, $P(t-Bu)_3HBF_4$, DMA, 120 °C; (b) KOTMS, THF, rt; (c) 20, 21, HATU, *i*-Pr_2NEt, CH_2Cl_2; (d) i—KOTMS, THF; ii—EDCI, HOBT, NH₃, CH_2Cl_2; (e) morpholine, *i*-Pr_2NEt, *i*-PrOH 100 °C.

Data for compounds from the adamantane head group modification are shown in Table 1. Polar heterocycles such as 8 and 9 were found to be potent and selective for the 11B-HSD1 enzymes. However, most of these compounds generally showed a shift in potency in the HEK assays. Currently, we do not fully understand the cause for the differences in the magnitude of potency shifts between compounds. Presumably, it is due to subtle differences in ionization of these polar groups which led to poorer cell penetration. The cellular assay was used to give us rough estimates on the ability of these compounds to inhibit 11β-HSD1 in vivo, therefore, potency shifts up to 10-fold were considered acceptable in this assay. A better predictor of in vivo performance is the metabolic stability assay, unfortunately, heterocycles 7-10 were rapidly metabolized in microsomal stability screen. Hydroxyamidine 11 was a potent and selective inhibitor which exhibited better metabolic stability than the above heterocyclic compounds. On the other hand, the homologated analogs 13-15 performed very well in all the in vitro assays, including remarkably improved metabolic stability.

Table 2 shows the biological results of compounds with polar heteroaromatic side chains. Several of these compounds are potent with pyrazolyl analog 26 reaching 5 nM with excellent selectivity against HSD2. Many of these compounds also possess good metabolic stability. Similar to our earlier observation in Table 1, compounds with fully basic groups at the side chain such as 25 suffered poor cellular penetration as determined by the HEK assay. In order to identify compounds suitable for in vivo efficacy studies in rodent models, selected compounds from Tables 1 and 2 were further examined in mouse ex vivo pharmacodynamic (PD)⁹ as well as PK studies and the results are summarized in Tables 3 and 4. We were interested in compounds that exhibit robust inhibition of 11β-HSD1 in liver and fat tissues at extended time points (i.e., 7 and 16 h) postdose. We hypothesize that compounds with such characteristics will allow sufficient coverage using a BID dosing regiment. The inhibition of 11β-HSD1 in brain has been implicated in enhancing memory and learning.¹⁰ Therefore, inhibition of the target enzyme was also measured in brain tissue to help us determine the ability of these compounds to either enter or be excluded from the brain.

Hydroxyamidine 11 showed robust inhibition of 11β -HSD1 in liver, fat, and brain tissues through 16 h. However, it showed rapid clearance and a short half-life

Table 3. Ex vivo pharmacodynamic data^a

Compound	% inhibition in liver 7 h/16 h	% inhibition in fat 7 h/16 h	% inhibition in brain 7 h/16 h
11	89/84	92/67	85/79
13	40/0	70/35	ND
14	62/37	17/20	11/9
15	99/93	50/37	67/18
22	57/0	47/23	ND

ND, not determined.

^a See Ref. 9 for a description of the assay.

Table 4. Mouse PK data^a

Compound	nAUC (µg*h/mL)	CLp (L/h/Kg)	$t_{1/2}$ (h)	F (%)
11	1.35	4.6	0.4	61.6
13	46.7	0.2	2.0	96.1
14	3.4	1.2	2.3	39.7
15	11.4	0.8	2.6	86.3

^aCalculated from 10 mg/kg iv and oral po dosing. Measured in plasma.

(Table 4, entry 1). This observation might be attributed to an active metabolite. The one carbon homologated acid 13 displayed long-acting PD activity in fat tissue, but shorter activity in the liver. The PK profile of 13 features low clearance, long half-life, and excellent bioavailability. Tetrazole 14 gives good inhibition of 11β-HSD1 in both liver and fat tissues, and it is mostly excluded from brain. The two carbon homologated acid 15 showed robust activity in fat, liver, and brain. Compound 15 is also accompanied with excellent PK data. Compound 22 showed moderate activity at 7 h (Table 3), but no activity in liver at 16 h. This might be due to extensive primary amide hydrolysis to the corresponding inactive acid at longer time points. In fat 22 shows higher activity than liver. All the compounds that we have evaluated in PK studies showed significantly improved bioavailability as compared to 1.

In conclusion, we have identified a series of modifications to the 11 β -HSD inhibitor 1 that resulted in improved PD and PK profiles. Efforts are currently underway to combine a favorable functional group at the adamantane head group with a polar heterocycle containing side chain that we have identified over the course of this work into one molecule. We anticipate that these hybrid molecules will have good combined PK and PD profiles in addition to other desirable properties such as increased water solubility. The results from this effort will be reported in due course.

References and notes

1. For a review on patents, see: Fotsch, C.; Askew, B. C.; Chen, J. J. Expert Opin. Ther. Pat. 2005, 3, 289; (a) Barf, T.; Vallgarda, J.; Emond, R.; Haggstrom, C.; Kurz, G.; Nygren, A.; Larwood, V.; Mosialou, E.; Axelsson, K.; Olsson, R.; Engblom, L.; Edling, N.; Ronquist-Nii, Y.; Ohman, B.; Alberts, P.; Abrahmsen, L. J. Med. Chem. 2002, 45, 3813; (b) Hermanowski-Vosatka, A.; Balkovec, J. M.; Cheng, K.; Chen, H. Y.; Hernandez, M.; Koo, G. C.; Grand, C. B. L.; Li, Z.; Metzger, J. M.; Mundt, S. S.; Noonan, H.; Nunes, C. N.; Olson, S. H.; Pikounis, B.; Ren, N.; Robertson, N.; Schaeffer, J. M.; Shah, K.; Springer, M. S.; Strack, A. M.; Strowski, M.; Wu, K.; Wu, T.; Xiao, J.; Zhang, B. B.; Wright, S. D.; Thieringer, R. J. Exp. Med. 2005, 202, 517; (c) Olson, S.; Aster, S. D.; Brown, K.; Carbin, L.; Graham, D. W.; Hermanowski-Vosatka, A.; LeGrand, C. B.; Mundt, S. S.; Robbins, M. A.; Schaeffer, J. M.; Slossberg, L. H.; Szymonifka, M. J.; Thieringer, R.; Wright, S. D.; Balkovec, J. M. Bioorg. Med. Chem. Lett. 2005, 15, 4359; (d) Gu, X.; Dragovic, J.; Koo, G. C.; Koprak, S. L.; LeGrand, C. B.; Mundt, S. S.; Shah, K.; Springer, M. S.; Tan, E. Y.; Thieringer, R.; Hermanowski-Vosatka, A.; Zokian, H. J.; Balkovec, J. M.; Waddle, S. T. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 5266; (e) Xiang, J.; Ipek, M.; Suri, V.; Massefski, W.; Pan, N.; Ge, Y.; Tam, M.; Xing, Y.; Tobin, J. F.; Xu, X.; Tam, S. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 2865; (f) Coppola, G. M.; Kukkola, P. J.; Stanton, J. L.; Neubert, A. D.; Marcopulos, N.; Bilci, N. A.; Wang, H.; Tomaselli, H. C.; Tan, J.; Aicher, T. D.; Knorr, D. C.; Jeng, A. Y.; Dardik, B.; Chatelain, R. E. J. Med. Chem. **2005**, *48*, 6696.

- For recent reviews, see: (a) Draper, N.; Stewart, P. M. J. Endocrinol. 2005, 186, 251; (b) Thieringer, R.; Hermanowski-Vosatka, A. Expert Rev. Cardiovasc. Ther. 2005, 3, 911; (c) Morton, N. M.; Paterson, J. M.; Masuzaki, H.; Holmes, M. C.; Staels, B.; Fievet, C.; Walker, B. R.; Flier, J. S.; Mullins, J. J.; Seckl, J. R. Diabetes 2004, 53, 931; (d) Tomlinson, J. W.; Walker, E. A.; Bujalska, I. J.; Draper, N.; Lavery, G. G.; Cooper, M. S.; Hewison, M.; Stewart, P. M. Endocr. Rev. 2004, 25, 831.
- (a) Krozowski, Z.; Li, K. X. Z.; Koyama, K.; Smith, R. E.; Obeyesekere, V. R.; Stein-Oakley, A.; Sasano, H.; Coulter, C.; Cole, T.; Sheppard, K. E. J. Steroid Biochem. Mol. Biol. 1999, 69, 391; (b) Stewart, P. M.; Krozowski, Z. S.; Gupta, A.; Milford, D. V.; Howie, A. J.; Sheppard, M. C.; Whorwood, C. B. Lacent 1996, 347, 88; (c) Stewart, P. M. J. Steroid Biochem. Mol. Biol. 1999, 69, 403.
- Patel, J. R.; Shuai, Q.; Link, J. T.; Rohde, J. J.; Dinges, J.; Sorensen, B. K.; Winn, M.; Yong, H.; Yeh, V. S. World Patent 074244, 2006, manuscript in preparation.
- Freeman, F.; Chen, T.; van der Linden, J. B. Synthesis 1997, 861.
- (a) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164; (b) Yeh, V. S. C.; Wiedeman, P. E. Tetrahedron Lett. 2006, 47, 6011.
- 7. Liu, X.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 5182.
- 8. The in vitro 11β -HSD-1 enzymatic assays are similar to the methods described in Ref.1a. Truncated human or mouse 11β-HSD-1, lacking the first 24 amino acids, was expressed in Escherichia coli using the pET28 expression system and the crude lysates were used as the enzyme source. The reaction was carried out with a total substrate (cortisone) concentration of 175 nM which contained 75 nM ³H-cortisone and 181 µM of the cofactor NADPH in 50 mM Tris-HCl, at pH 7.2 with 1 mM EDTA. The final enzyme concentration was 0.015 mg/mL to keep the substrate consumption rate below 25% at the end of the reaction. To ensure the reaction proceeds in the reductase direction, a NADPH regeneration system with 1 mM G-6-P and 1 U/mL G-6-PDH was included in the reaction. After incubating at room temperature for 30 min, the reaction was terminat-

ed by adding the non-selective 11B-HSD-1 inhibitor 18B-GA. The radioactive cortisol generated in the assay was captured by a monoclonal anti-cortisol antibody and SPA beads coated with anti-mouse antibodies. The plate was read using a Microbeta Liquid Scintillation Counter (Perkin-Elmer Life Sciences). The percent inhibition was calculated relative to a non-inhibited control and plotted against compound concentration to generate the IC₅₀ results. HEK assays: cellular activity of the compounds was evaluated in HEK293 cells which were stably transfected with full-length human 11β- HSD-1 cDNA. Cells were plated on poly-D lysine-coated plates (Becton-Dickinson Biocoat 35-4461) in DMEM containing 10% FBS, 300 µg/mL geneticin, 100 U/mL penicillin, 100 µg/ mL streptomycin, and 0.25 µg/mL Fungizone. The cells were pretreated with compounds for 30 min, followed by incubation with 1 µM of substrate (cortisone) in dPBS buffer for 2 h at 37 °C in a 5% CO₂ atmosphere. The cell media were harvested and the cortisol concentration in the media was determined by fluorescence polarization immuno-assay (FPIA). A mixture of fluorescein-labeled cortisol and monoclonal anti-cortisol antibody was added to the well in the FPIA diluent buffer (Abbott Laboratories) to a final concentration 4 nM (cortisol) and 10 nM (mAb). The resulting fluorescent signal was read using an Analyst plate reader (LJL). The percent inhibition was calculated relative to a non-inhibited control and plotted against compound concentration to generate the IC_{50} results.

- 9. Compounds were dissolved in 1% Tween 80 in 0.2% hydroxypropyl methylcellulose and administered to DIO mice as a single oral dose at 30 mpk. At 1, 7, and 16 h post-dose, fresh tissues including liver, epididymal fat pad (EFP), and brain were removed, immersed in PBS buffer, and weighed (3 mice per data point were used). The total volume of PBS buffer added was equivalent to approximately five times the mass of tissue. Tissues were minced into 2-3 mm pieces and the substrate (cortisone) was added to a final concentration of 10 µM. The tissues were then incubated at 37 °C in a 5% CO₂ atmosphere for 20 min for liver and three hours for brain and adipose tissue. The cortisol concentration in the media was determined by LC-MS detection. The percent inhibition of 11B-HSD-1 activity was calculated relative to a vehicle control treated group. Ex vivo 11β-HSD-1 assays in ob/ob mice and other strains of rodents were conducted similarly.
- Sandeep, T. C.; Yau, J. L.; MacLullich, A. M., et al. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 6734.