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Abstract—A series of metabolically stable adamantane amide 11b-HSD1 inhibitors have been synthesized and biologically evaluat-
ed. These compounds exhibit excellent HSD1 potency and HSD2 selectivity and good pharmacokinetic and pharmacodynamic
profiles.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. Adamantane amide 11b-HSD inhibitor.
11b-Hydroxysteroid dehydrogenase type 1 (11b-HSD1)
has attracted significant attention from the pharmaceu-
tical research community as a target for the treatment of
metabolic syndrome.1 This endoplasmic reticulum-asso-
ciated enzyme converts the glucocorticoid receptor (GR)
inactive cortisone (dehydrocorticosterone in rodents)
into the GR active hormone cortisol (corticosterone in
rodents). In the liver, cortisol stimulates gluconeogenesis
through upregulation of enzymes such as phosphoenol-
pyruvate carboxykinase and glucose 6-phosphatase, and
in adipose tissue, cortisol promotes adipogenesis and
lipolysis.2 A related enzyme, 11b-HSD2, catalyzes the
reverse reaction which in tissues like kidney protects
the mineralocorticoid receptor from activation by corti-
sol.3 The current hypothesis is that a small molecule
therapeutic that selectively targets 11b-HSD1 can be a
viable strategy for the treatment of metabolic syndrome.

We have identified adamantane amides exemplified by
14 from initial hit to lead work, which are potent
inhibitors of human and mouse 11b-HSD1 with selec-
tivity over 11b-HSD2 (Fig. 1). Although 1 has an
excellent in vitro activity against the targeted enzymes,
it has a poor pharmacokinetic (PK) profile in mice.
This is due to metabolism of the phenoxy side chain,
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as determined by in vitro mouse liver microsomal sta-
bility studies, and primary amide hydrolysis in mouse
serum. The primary carboxamide on the adamantane
contributes to its potent activity as well as the meta-
bolic stability of the adamantane head group. Easily
accessible secondary and tertiary adamantane carbox-
amide analogs were either not active or lacked accept-
able PK profiles. Moreover, analogs related to 1 that
contain non-polar aromatic phenoxy groups have lim-
ited metabolic stability.

Our goal is to discover compounds that will provide
long enough coverage for BID dosing for in vivo efficacy
studies in rodents. Hence, desirable compounds should
have a PK profile with greater bioavailability and lower
clearance. We attempted to address these challenges via
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two concerted approaches: (1) identify hydrolytically
stable carboxamide bioisosteres that maintain high
potency and selectivity; (2) prepare compounds contain-
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Scheme 2. Reagents and conditions: (a) 3, 2-amino-malononitrile, EDCI, py

(c) 4, glyoxal, NH3, MeOH, rt; (d) 6, NH2OH, DBU, DMF, 80 �C; (e) 5
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Scheme 1. Reagents and conditions: (a) KOTMS, THF, rt; (b) i—LiAlH4, TH

THF, 0 �C; ii—Dess–Martin periodinane, CH2Cl2; (d) i—EDCI, HOBT, i-P
ing more polar heteroaromatic side chains which exhibit
metabolic stability and improvements in PK profile. In
this paper, we report our initial results.
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Ester 2 was converted into compounds 3–6 using stan-
dard functional group transformations (Scheme 1).
Compounds 3–6 served as starting materials for the syn-
theses of a number heterocycle bioisosteres of the pri-
mary amide.

Acid 3 was converted into amino oxazole 75 and amino
triazole 8 (see Scheme 2 and Table 1). Aldehyde 4 was
transformed into imidazole 9. Isoxazole 10 was derived
from alkynone 6. Addition of hydroxylamine to cyanide
5 gave hydroxyamidine 11, which was then converted
into 12. In addition, we also explored the possibility of
extending the polar group 1 or 2 carbons away from
the adamantane head group. The syntheses of homolo-
gated analogs utilized either TOSMIC or stabilized Wit-
tig reagents on aldehyde 4 (Scheme 2), followed by
tetrazole synthesis (14) or hydrolysis to give the corre-
sponding acids 13 and 15.

Modification of the side chain was achieved by replacing
the phenoxy group of 1 by a pyridyl group. The heteroa-
romatic group can either be linked through an oxygen
spacer, such as 22, or be directly attached to the quater-
nary carbon bearing the gem-dimethyl groups, such as
Table 1. In vitro inhibition and metabolic stability data for 6–14
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a Values are means of two experiments.
b % remaining after a 30 min incubation with mouse liver microsome.
27 (Table 2). The syntheses of these side chains are
depicted in Schemes 3 and 4.

The O-linked hetroaryl analogs were prepared by nucle-
ophilic aromatic substitution of a chloropyridine by hy-
droxy ester 16 followed by the attachment of
adamantane 214 and conversion to primary carboxam-
ide (Scheme 3). Pyridyl bromide 22 was further elaborat-
ed via copper (I) catalyzed C–N coupling6 to give 24–26.

The C-linked analogs such as 28 were synthesized by a
palladium catalyzed coupling7 of silyl ketene acetal 19
with a pyridyl bromide such as 18 followed by acylation
with adamantane 21 and conversion to the correspond-
ing carboxamide by similar methods as those described
for 22 (Scheme 4). The amino substituents of 28 and
29 were attached by nucleophilic substitution reactions.

These compounds were tested against both human and
mouse 11b-HSD1 and 11b-HSD2 enzymes as well as a
cell based assay with 11b-HSD1 overexpressed in hu-
man embryonic kidney cells (HEK).8 In addition, meta-
bolic stability of these compounds was determined using
mouse liver microsomal incubation studies.
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Table 2. In vitro inhibition and metabolic stability data for 22–29
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Table 4. Mouse PK dataa

Compound nAUC (lg*h/mL) CLp (L/h/Kg) t1/2 (h) F (%)

11 1.35 4.6 0.4 61.6

13 46.7 0.2 2.0 96.1

14 3.4 1.2 2.3 39.7

15 11.4 0.8 2.6 86.3

a Calculated from 10 mg/kg iv and oral po dosing. Measured in

plasma.
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Data for compounds from the adamantane head group
modification are shown in Table 1. Polar heterocycles
such as 8 and 9 were found to be potent and selective
for the 11b-HSD1 enzymes. However, most of these
compounds generally showed a shift in potency in the
HEK assays. Currently, we do not fully understand
the cause for the differences in the magnitude of potency
shifts between compounds. Presumably, it is due to sub-
tle differences in ionization of these polar groups which
led to poorer cell penetration. The cellular assay was
used to give us rough estimates on the ability of these
compounds to inhibit 11b-HSD1 in vivo, therefore,
potency shifts up to 10-fold were considered acceptable
in this assay. A better predictor of in vivo performance
is the metabolic stability assay, unfortunately, heterocy-
cles 7–10 were rapidly metabolized in microsomal stabil-
ity screen. Hydroxyamidine 11 was a potent and
selective inhibitor which exhibited better metabolic sta-
bility than the above heterocyclic compounds. On the
other hand, the homologated analogs 13–15 performed
very well in all the in vitro assays, including remarkably
improved metabolic stability.

Table 2 shows the biological results of compounds with
polar heteroaromatic side chains. Several of these com-
pounds are potent with pyrazolyl analog 26 reaching
5 nM with excellent selectivity against HSD2. Many of
these compounds also possess good metabolic stability.
Similar to our earlier observation in Table 1, com-
pounds with fully basic groups at the side chain such
as 25 suffered poor cellular penetration as determined
by the HEK assay. In order to identify compounds suit-
able for in vivo efficacy studies in rodent models, select-
ed compounds from Tables 1 and 2 were further
examined in mouse ex vivo pharmacodynamic (PD)9

as well as PK studies and the results are summarized
in Tables 3 and 4. We were interested in compounds that
exhibit robust inhibition of 11b-HSD1 in liver and fat
tissues at extended time points (i.e., 7 and 16 h) post-
dose. We hypothesize that compounds with such charac-
teristics will allow sufficient coverage using a BID dosing
regiment. The inhibition of 11b-HSD1 in brain has been
implicated in enhancing memory and learning.10 There-
fore, inhibition of the target enzyme was also measured
in brain tissue to help us determine the ability of these
compounds to either enter or be excluded from the
brain.

Hydroxyamidine 11 showed robust inhibition of
11b-HSD1 in liver, fat, and brain tissues through 16 h.
However, it showed rapid clearance and a short half-life
Table 3. Ex vivo pharmacodynamic dataa

Compound % inhibition in

liver 7 h/16 h

% inhibition in

fat 7 h/16 h

% inhibition in

brain 7 h/16 h

11 89/84 92/67 85/79

13 40/0 70/35 ND

14 62/37 17/20 11/9

15 99/93 50/37 67/18

22 57/0 47/23 ND

ND, not determined.
a See Ref. 9 for a description of the assay.
(Table 4, entry 1). This observation might be attributed
to an active metabolite. The one carbon homologated
acid 13 displayed long-acting PD activity in fat tissue,
but shorter activity in the liver. The PK profile of 13 fea-
tures low clearance, long half-life, and excellent bio-
availability. Tetrazole 14 gives good inhibition of 11b-
HSD1 in both liver and fat tissues, and it is mostly
excluded from brain. The two carbon homologated acid
15 showed robust activity in fat, liver, and brain. Com-
pound 15 is also accompanied with excellent PK data.
Compound 22 showed moderate activity at 7 h (Table
3), but no activity in liver at 16 h. This might be due
to extensive primary amide hydrolysis to the corre-
sponding inactive acid at longer time points. In fat 22
shows higher activity than liver. All the compounds that
we have evaluated in PK studies showed significantly
improved bioavailability as compared to 1.

In conclusion, we have identified a series of modifica-
tions to the 11b-HSD inhibitor 1 that resulted in im-
proved PD and PK profiles. Efforts are currently
underway to combine a favorable functional group at
the adamantane head group with a polar heterocycle
containing side chain that we have identified over the
course of this work into one molecule. We anticipate
that these hybrid molecules will have good combined
PK and PD profiles in addition to other desirable prop-
erties such as increased water solubility. The results
from this effort will be reported in due course.
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