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ABSTRACT: A dual catalytic sp3  C–H arylation & 
alkylation of benzamides with organic halides is 
described. This protocol exhibits an exquisite site-, 
chemo- and enantioselectivity pattern, offering a 
complementary reactivity mode to existing sp3 arylation 
or alkylation events via transition metal catalysis or 
photoredox events.

Keywords: sp3 C–H activation, Photocatalysis, Nickel, 
enantioselectivity, metallaphotoredox.

Catalytic C–H functionalization reactions have 
streamlined the synthesis of valuable molecules by 
avoiding functional group manipulations while offering a 
reliable solution to forge C–C bonds from simple 
precursors.1 However, the ability to rationally and 
predictably switch the site-selectivity pattern in these 
endeavors still remains a problematic, yet highly 
rewarding, scenario.2 

Scheme 1. Site-Selective sp3 Functionalization of Amides.

The prevalence of aliphatic amines in a myriad of 
molecules displaying biological activities3 has prompted 
chemists to develop mild, non-invasive site-selective sp3 
C–H functionalizations as a platform for structural 

diversity.4 In this vein, photoredox catalysis has recently 
offered new tactics for the  sp3 C–H functionalization of 
aliphatic tertiary amines via single-electron transfer (SET) 
or hydrogen-atom transfer (HAT) pathways due to their 
favorable redox profile.4,5Although the higher reduction 
potential of tertiary amide congeners makes the 
functionalization of this substrate class more difficult, 
elegant solutions have been described with more 
oxidizing catalysts or conditions.6 In contrast, the sp3 C–
H functionalization of aliphatic secondary amides have 
received much less attention. Independent work 
developed by Rovis7 and Knowles8 established a new 
rationale for enabling  sp3 C–H alkylation with activated 
Michael acceptors through [1,5]-HAT processes via 
amidyl radical species (Scheme 1, path a).9 Although a 
site-selectivity switch has recently been obtained with 
specific amide patterns (path b),10 this technology 
remains confined to activated electron-deficient olefins 
and stoichiometric HAT-mediators.6,11 In view of the 
foregoing, the design of a catalytic protocol aimed at 
expanding the boundaries of sp3 -functionalization of 
aliphatic secondary amides with broadly applicable 
counterparts might provide an opportunity to explore 
inaccessible chemical space while offering new strategic 
bond-forming reactions. Herein, we describe the 
successful realization of this goal via dual catalysis 
(Scheme 1, bottom).12,13 Our protocol is distinguished by 
its mild reaction conditions, broad substrate scope and 
exquisite site-, chemo- and enantioselective pattern.

Scheme 2. sp3  C–H Arylation of Aliphatic Benzamides.
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We started our investigations by studying the sp3 -
arylation of 1a and 1k with 4-trifluoromethyl 
bromobenzene (Scheme 2). After systematic evaluation 
of all reaction parameters,14 we found that a protocol 
based on PC1/L1 or PC2/L2 provided the best results 
under Blue-LED irradiation, affording 2a and 2k in 70% 
and 53% yield.  As expected, the nature of the ligand, 
nickel precatalyst and photocatalyst had a non-negligible 
impact on reactivity. Equally important was the nature of 
the base and solvent; indeed, inferior results were found 
for K2HPO4 and Cs2CO3 or solvents other than dioxane 
and EtOAc, thus showing the subtleties of our 
protocol.15,16 

Table 1. sp3 -Arylation of Benzamides.a

a Isolated yields, average of two independent runs. b 1 (0.40 
mmol), (Het)ArBr (0.20 mmol), NiBr2·diglyme (10 mol%), 
L1 (15 mol%), PC1 (1 mol%), K3PO4 (0.30 mmol), dioxane 
(1.0 mL) at rt for 20 h.  c 1 (3 equiv) were used. d 1 (0.20 
mmol), (Het)ArBr (1.50 mmol), NiCl2·glyme (5 mol%), L2 
(5 mol%), PC2 (2 mol%), K3PO4 (0.4 mmol), EtOAc (1.0 
mL) at rt for 20 h.

Next, we turned our attention to investigating the 
generality of our dual catalytic sp3 -arylation. As shown 
in Table 1, compounds bearing esters (2d, 2j), nitriles (2s), 
sulfonamides (2i), ketones (2f, 2g, 2t) or amides (2j) 
could all be well-accommodated. Similar results were 
found independently whether substituents were located at 
the ortho, meta or para position. Importantly, however, 
electron-deficient arenes generally provided better yields 
of the targeted sp3 -arylated products. The method 
shows a strong preference for aryl bromides, as the 
corresponding aryl chlorides (2r), aryl fluorides (2c, 2p, 
2s) or boronic esters (2n) remained inert, thus providing 
ample room for further derivatization via conventional 
cross-coupling reactions. Albeit in slightly lower yields, 
the method was shown to be compatible with heteroaryl 
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bromides (2u-2w). The exclusive formation of 2j bearing 
two seemingly similar benzamides is particularly 
noteworthy; no traces of sp3 C–H functionalization 
adjacent to the ester motif were found in the crude 
mixtures. Although tentative, this result is consistent with 
C–C bond-formation occurring at the more hydridic sp3 
C–H bond that is more susceptible to HAT by 
electrophilic radical species.4,5 Notably, similar results 
were found for benzamides possessing different 
electronic environments (2ac, 2ad) or with heteroaryl-
substituted motifs (2ae) regardless of the length of the 
alkyl side-chain (2x, 2y), even in the presence of free 
alcohols (2z), acetates (2aa) or alkyl chlorides (2ab). 

Table 2. sp3 -Alkylation of Benzamides.a,b

a 1 (0.60 mmol), (Het)ArBr (0.20 mmol), NiBr2·diglyme (10 
mol%), L3 (bipyridine; 15 mol%), PC1 (1 mol%), K3PO4 
(0.30 mmol), dioxane (1.0 mL) at rt. b Isolated yields, 
average of at least two independent runs. 

Encouraged by these results, we wondered whether our 
method would be robust enough to forge related sp3–sp3 
linkages by using unactivated alkyl halides as 
counterparts. The successful implementation of such a 
protocol, however, might not be particularly 
straightforward. Indeed, the available sp3 -alkylation 
portfolio of aliphatic secondary amides largely remains 
confined to the use of particularly activated -
unsaturated carbonyls as coupling partners,9a  although 
some developments from MacMillan have described 
alkylations on substrate classes other than secondary 
aliphatic amides.9b  In addition, -hydride elimination and 
the low propensity for sp3–sp3 C–C reductive elimination 
represent important drawbacks to be overcome.17 

Therefore, at the outset of our investigations it was 
unclear whether it would be possible to promote a sp3–sp3 
bond-formation adjacent to the amide function with 
unactivated alkyl halides. Gratifyingly, we found that the 
sp3 -alkylation was within reach by using a Ni/L3 
regime under otherwise identical reaction conditions to 
those shown in the sp3 -arylation event (Table 2). As 
shown in Table 3, a host of unactivated alkyl halides 
possessing -hydrogens promoted the targeted 
transformation with similar ease. In addition, the presence 
of nitriles (3d), free alcohols (3f), alkyl chlorides (3g), 
amides (3h), ketones or esters (3i) did not hinder the 
reaction. 

Table 3. Enantioselective sp3 -Arylation of Benzamides.a,b

a 1 (0.20 mmol), ArBr (1.50 mmol), NiCl2·glyme (5 mol%), 
iPrBiOx (5 mol%), PC1 (2 mol%), K3PO4 (0.40 mmol), 
EtOAc (1.0 mL) at –15 ºC. b Isolated yields.

A close inspection into the literature data reveals that an 
asymmetric sp3 C–H arylation initiated via photoinduced 
HAT processes remains an elusive endeavour within the 
metallaphotoredox arena.13,18 To address this gap, we 
focused on developing an enantioselective sp3  C–H 
functionalization of aliphatic secondary amides with aryl 
halides. Gratifyingly, we found that a protocol based on 
iPrBiOx (L3) was particularly suited for our purposes 
(Table 3). Although preliminary, the corresponding -
arylated products could be obtained in high levels of 
enantioselectivity with comparable yields to those shown 
in Table 2 regardless of the substitution pattern at both the 
aryl halide and the aliphatic amide backbone (4a-4c), thus 
constituting a complementary, yet powerful, platform to 
elegant protocols recently described by Doyle and Yu.18,19 

Prompted by the PCET work of Rovis6,8 and Knowles7 on 
the  sp3 C–H alkylation of aliphatic secondary amides 
with electron-deficient olefins,20 we anticipated that our 
protocol might serve as an orthogonal gateway to forge 
sp3 C–C bonds in aliphatic amides at either - or -
positions. As shown in Scheme 3, this turned out to be the 
case and regiodivergent C–C bond-formation could be 
accessed by using 5 as substrate. As expected, -
alkylation with an activated -unsaturated compound 
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was obtained by subjecting 5 to PC-3 and 
NBu4OP(O)(OBu)2 under Blue-LED irradiation,7 
whereas exclusive sp3 -arylation (7a, 7b) was obtained 
under the Ni(L1)/PC1 or Ni(L2)/PC2 couple. Notably, 8 
could be prepared from 6b and 7b following the same 
rationale, demonstrating the orthogonality of our sp3 C–
H functionalization approach for forging C–C bonds at 
either  or -positions. At present, we don´t have an 
explanation for the low yields obtained. Taken together, 
the results in Tables 1-3 and Scheme 3 illustrate the 
prospective impact of our dual catalytic platform for 
forging sp3 C–C linkages adjacent to benzamide motifs in 
a site-selective manner.

Scheme 3. Orthogonality with 1,5-HAT processes.

Next, we decided to gather indirect evidence about the 
mechanism by deuterium-labelling (Scheme 4, top). As 
shown, a primary kinetic isotope effect (KIE) was 
observed by exposing a 1:1 mixture of 1a and 1a-D2 
under a PC1/L1 regime, suggesting that sp3 C–H bond-
cleavage might be involved in the rate-determining step 
of the reaction. Similar results were found using a 1:1 
ratio of 1k:1k-D2 with PC2/L2. Aimed at shedding light 
on the subsequent C–C bond-forming event, we turned 
our attention to study the reactivity of the putative 
oxidative addition species Ni-I, readily obtained by 
reacting 4-trifluoromethyl bromobenzene to Ni(COD)2 
and L1 in THF (middle).14 As expected, Ni-I was found 
to be catalytically competent, affording 2a in 32% yield.21 
Although speculative, the lower yields of 2a employing 
Ni-I when compared to an in situ protocol based on 
NiBr2·diglyme/L1 can tentatively be ascribed to its 
inherent instability in the absence of aryl bromide and its 
strong absorption in the visible light region.22 In addition, 
the preparation of 2x, 2y, 2aa and 2ab is particularly 

illustrative, arguing against a scenario based on 1,5-HAT 
followed by recombination with Ni-I and a chain-walking 
manifold prior to C–C bond-formation at the -position 
(bottom).23 Whether the key transient radical species 
adjacent to the amide function are obtained via 
intermolecular HAT processes or invoke other 
mechanistic considerations is the subject of ongoing 
studies.24

Scheme 4. Preliminary Mechanistic Experiments.

In summary, we have documented a dual catalytic 
strategy that enables an sp3 -arylation and sp3 -
alkylation of benzamides, offering a complementary 
activation mode to existing metal-catalyzed or 
photoinduced processes. The protocol is characterized by 
its mild conditions, wide scope and exquisite site-, 
chemo- and enantioselectivity. Further studies to unravel 
the mechanistic intricacies of the reaction and the 
extension to other C–C bond-forming scenarios are 
currently ongoing. 
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