Synthesis of Iriomoteolide-1a C13–C23 Fragment via Asymmetric Conjugate Addition and Julia–Kocienski Coupling Reaction

LETTERS 2009 Vol. 11, No. 16 3674–3676

ORGANIC

Yen-Jin Chin, Shun-Yi Wang, and Teck-Peng Loh*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371

teckpeng@ntu.edu.sg

Received June 30, 2009

ABSTRACT

Recently, Tsuda and co-workers have reported isolation of a series of macrolides named iriomoteolides from marine dinoflagellates, *Amphidinium* sp., collected off the Iriomote Island of Japan.¹ Among them, iriomoteolide-1a (1) exhibited potent cytotoxicity against human B lymphocyte DG-75 cells with an IC₅₀ of 2 ng/mL and Epstein–Barr virus (EBV)infected human B lymphocyte Raji cells with an IC₅₀ of 3 ng/mL.^{1b} To date, this natural product has yet to surrender itself to any total synthesis. Nevertheless, Yang's group and Ghosh's group have reported synthesis of the C1–C12 fragment.² Moreover, Horne et al. lately has described the synthetic route of the cyclic hemiketal core of the molecule.³ Its unique molecular structure and potent cytotoxicity have also attracted our interest in its synthesis. Herein, we report the synthesis of C13–C23 fragment of iriomoteolide-1a (1).

Our approach to the development of an efficient method for the construction of iriomoteolide-1a (1) is as shown in Scheme 1. The strategy involves stereoselective allylations of **3** (C1–C9 segment) and **4** (C13–C23 segment) by fragment **2** (C10–C12 segment), followed by a Yamaguchi macrolactonization between the C1-carbonyl and C19hydroxyl group for construction of the macrolide ring. Fragment **4** in turn, can be obtained via Julia–Kocienski olefination between aldehyde **5** and sulfone **6**, with *E*-alkene geometry at C15–C16.

⁽¹⁾ The investigation of the *Amphidinium* strain HYA024 led to isolation of iriomoteolide-1a (1), -1b, and -1c. (a) Isolation and structural elucidation of iriomoteolide-1a (1): Tsuda, M.; Oguchi, K.; Iwamoto, R.; Okamoto, Y.; Kobayashi, J.; Fukushi, E.; Kawabata, J.; Ozawa, T.; Masuda, A.; Kitaya, Y.; Omasa, K. J. Org. Chem. 2007, 72, 4469. (b) Isolation and structural elucidation of iriomoteolide-1b and -1c: Tsuda, M.; Oguchi, K.; Iwamoto, R.; Okamoto, Y.; Fukushi, E.; Kawabata, J.; Ozawa, T.; Masuda, A. J. Nat. Prod. 2007, 70, 1661.

^{(2) (}a) Fang, L. J.; Xue, H. R.; Yang, J. Org. Lett. **2008**, 10, 4645. (b) Ghosh, A. K.; Yuan, H. Tetrahedron Lett. **2009**, 50, 1416.

⁽³⁾ Xie, J.; Horne, D. A. Tetrahedron Lett. 2009, 50, 4485.

⁽⁴⁾ The diastereoselectivity and enantioselectivity were determined by comparison with the NMR spectroscopic and HPLC analytical results of diastereomers obtained from this paper: Nots, W.; List, B. J. Am. Chem. Soc. 2000, 122, 7386.

⁽⁵⁾ Nicolaou, K. C.; Li, H.-M.; Nold, A. L.; Pappo, D.; Lenzen, A. J. Am. Chem. Soc. 2007, 129, 10356.

⁽⁶⁾ Compound **11a** has also been used in an alternative synthesis of the C13–C23 fragment (results submitted for publication).

⁽⁷⁾ Nishikawa, T.; Urabe, D.; Isobe, M. Angew. Chem., Int. Ed. 2004, 43, 4785.

⁽⁸⁾ Lum, T. K.; Wang, S. Y.; Loh, T. P. Org. Lett. 2008, 10, 761.

Scheme 1. Retrosynthetic Analysis of Iriomoteolide-1a (1)

Our synthesis of the aldehyde **5**, shown in Scheme 2, commences with cyclohexanecarbaldehyde **7** and hydroxy-acetone **8**. The direct asymmetric aldol reaction catalyzed

by D-proline provided *anti*-diol **9** in 60% yield, with a dr >20:1 and ee >99%.⁴ Ensuing isoproylidene formation⁵ was employed to protect the 1,2-diol. The Grignard derived from vinyl bromide was added smoothly to intermediate **10** leading ultimately to tertiary alcohol **11a**,⁶ whose diastereomeric purity (80% de) was determined by ¹H NMR analysis. Subsequent silylation⁷ followed by ozonolysis generated aldehyde **5**. The stereochemistries were further confirmed by X-ray structural analysis of PMB ether protected **11a** (Figure 1).

Our synthesis of sulfone **6** is depicted in Scheme 3. Silyl ether protection of (–)-methyl-L-lactate **13** followed by a one-pot DIBAL-H reduction–Wittig olefination⁸ protocol afforded the *trans*-enoate **15** in 69% yield. By means of an asymmetric conjugate addition of Grignard reagents to α , β -

Figure 1. Stereochemical Determination of 11a

unsaturated ester previously developed in our group, the C29 methyl moiety was stereoselectively introduced into the acyclic carbon chain **15** using (*R*)-Tol-BINAP, to give **16** in 94% de (Table 1).^{9,10} Subsequently, DIBAL-H reduction followed by asymmetric Brown crotylation¹¹ of aldehyde **17** furnished **18** with two new stereogenic centers. Next, the secondary hydroxyl group in **18** was protected as the triethylsilyl ether. Following oxidation of the terminal olefin

Table 1. 1,4-Michael Addition of MeMgBr to 15^{a}

MeC	0 15	TBS MeMgBr, ligand t-BuOMe, -20 °C	MeO	OTBS
entry	ester	catalyst	yield (%)	anti:syn ^b
1	trans-15	10 mol % CuI	64	95:5
2	trans-15	2 mol % CuI +	60	>99:1
		3 mol % (S)-Tol-BINAP		
3	trans-15	$2 \mod \%$ CuI $+$	63	3:97
		3 mol % (R)-Tol-BINAP		
4	cis-15	10 mol % CuI	0	
<i>a</i> .				

^{*a*} All reactions were performed with **15** (0.5 mmol) and MeMgBr (2.5 mmol, 3 M in diethyl ether) in *t*-BuOMe (1 mL) at -20 °C. ^{*b*} Determined by crude ¹³C NMR.

in **19** employing hydrogen peroxide as the oxidizing agent,¹² the resulting primary alcohol **20** was subjected to Mitsunobu protocol,¹³ affording the desired aryl sulfide **21** in good yield. Finally, completion of the requisite sulfone **6** was achieved by oxidation using ammonium molybdate and hydrogen peroxide.¹³

With the aldehyde **5** and sulfone **6** in hand, we then carried out Julia–Kocienski olefination¹⁴ (Table 2). The use of KHMDS (in toluene) provided **4a** (C13–C23 fragment) in only 29% isolated yield with low regioselectivity. Interest-

Table 2. Julia-Kocienski Olefination

\bigcirc	0 .OR .OR 5-5a	H + 6 THF -78 °C to rt overnight		OTBS S		
entry	R	base (soln)	product (yield, %)	$E:Z^a$		
1	TES	KHMDS (in toluene)	4a (29)	60:40		
2	TES	KHMDS (in THF)	4a (27)	>99:1		
3	PMB	$KHMDS \; (in \; toluene)$	4b (trace)			
⁴ The $E/7$ ratios were determined by $ \mathbf{H} $ NMP analysis of the grade						

^{*a*} The *E/Z* ratios were determined by ¹H NMR analysis of the crude product mixtures.

ingly, when KHMDS (in THF) was used, the desired product was isolated as a single isomer, albeit in low yield (27%, Table 2, entry 2). In addition, replacement of the TES ether protecting group with a PMB ether proved detrimental, suggesting steric effect from the adjacent tertiary protected hydroxyl group in operation.

In summary, we have developed an asymmetric synthesis of the C13–C23 fragment of iriomoteolide-1a (1). Further work toward the total synthesis of iriomoteolide-1a (1) is in progress.

Acknowledgment. We gratefully acknowledge the Nanyang Technological University and Singapore of Education Academic Research Fund Tier 2 (No. T206B1221 and T207B1220RS) and Biomedical Research Council (05/1/22/ 19/408) for the funding of this research.

Supporting Information Available: Additional experiment procedures, cif file of crystallographic data for compound **12b**, and NMR spectral data for reaction products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL901480S

⁽⁹⁾ Diastereoselectivity was determined by ¹³C NMR by comparing an average of carbon signals with respective diastereomeric mixtures of the acyclic carbon chain. The stereochemistry was assigned on the basis of enantiomeric Tol-BINAP ligands.

 ^{(10) (}a) Wang, S. Y.; Ji, S. J.; Loh, T. P. J. Am. Chem. Soc. 2007, 129, 276. (b) Wang, S. Y.; Lum, T. K.; Ji, S. J.; Loh, T. P. Adv. Synth. Catal. 2008, 350, 673.

^{(11) (}a) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 293.
(b) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919.

⁽¹²⁾ Kabalka, G. W.; Shoup, T. M.; Goudgaon, N. M. J. Org. Chem. 1989, 54, 5930.

⁽¹³⁾ Paquette, L. A.; Chang, S. K. Org. Lett. 2005, 7, 3111.

⁽¹⁴⁾ Esteban, J.; Costa, A. M.; Vilarrasa, J. Org. Lett. 2008, 10, 4843.