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ABSTRACT: Palladium-catalyzed direct alkenylation of cyclopropyl
C—H bonds proceeds in high efficiency. This transformation provides
access to novel cyclopropyl-fused azacycles. Ligand studies suggest
that bisphosphine monoxide analogues of dppf and rac-BINAP are
the active ligand species. Preliminary results support that both
BozPhos and IPrMonophos ligands can achieve high enantioinduc-
tion for this novel direct alkenylation reaction. To date, this
represents the first example of enantioselective C—H functionalization employing a bisphosphine monoxide ligand.
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A- s a promising synthetic tool, direct functionalization offers
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an alternative to traditional cross- couphng and other
environmentally hazardous classical methods." In spite of
significant advances within this field, research interests have
been concentrated on developing direct arylation strategies to
access unsaturated systems.” Increasing the number of sp®
centers within drug candidates can improve metabolic stability,
allow access to a more diverse chemical space, and reduce
target promiscuity.’ Despite industrial motivations to build
more complex three-dimensional architectures, the synthetic
tools required for efficient parallel synthesis of nonaromatic
ring systems remain limited. More recently, there has been a
push toward addressing this knowledge deficiency. For
example, based on the pioneering contributions by Fujii and
Ohno, Baudoin and Willis developed Pd-catalyzed direct
alkenylation protocols employing amine-based tethers (Scheme
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Cyclopropane incorporation has contributed to accessing a
portfolio of pharmacologically diverse compounds, including
eight of the top 200 FDA-approved best-selling drugs.” Such
successful applications of the cyclopropyl ring-system continue

-sp3 C-H functionalization

-5-6 fused ring-systems

-Amine based-tether

-High catalyst loading

-Pivalate required

-Limited to cyclohexenyl bromides

to drive efforts toward designing more efficient and novel This Work:

synthetic pathways. Previously, we and others have shown that Pd(OAC), (5 mol %)

both inter- and intramolecular direct arylaglon can generate )?Ra Efggi‘ﬁ"g‘gq(;?v) R R3
highly functionalized cyclopropyl scaffolds.”” Building on this toluene, [0.2 M, 110 °C, 16 h SN,
foundation, we postulated that a direct alkenylation strategy o
could provide access to a novel class of cyclopropyl-fused n=00r1 (3G H functionalization

azacycles possessing an internal alkene motif (Scheme 1). X=Br,Cl  |-5-6-3 and 6-6-3 fused ring-systems

Herein, we disclose a novel palladium-catalyzed, intra-
molecular cyclopropyl direct alkenylation that proceeds under
mild conditions employing an inexpensive base, providing
access to both 5—6—3 and 6—6—3 fused heterocyclic ring
systems. Additionally, we disclose a rare example of asymmetric
intramolecular C—H alkenylation employing IPrMonophos.
Finally, we provide preliminary evidence that bisphosphine
monoxide ligands, such as BozPhos, can be employed in
asymmetric C—H functionalization reactions.

-4 ACS Publications  © Xxxx American Chemical Society

-Amide based-tether
-Reduced catalyst loading.
-Inexpensive mild base.
-Alkenyl chlorides are viable
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Based on our previous successes involving an amide tether,
we chose 2-bromocyclohexenyl amide la as our starting
substrate. Cyclization produced saturated cyclopropyl-fused
azacycle 2a in excellent yield using reduced amounts of catalyst,
ligand, and base (Scheme 2).

Scheme 2. Initial Discovery of Cyclopropyl Direct
Alkenylation
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To further understand this transformation, we performed a
full optimization (see Supporting Information). The addition of
pivalic acid did not significantly improve yields, and silver
additives inhibited reactivity. Various Pd(II) and Pd(0) sources
could also be employed; however, Pd(OAc), provided the best
conversion, indicative of the important role of acetate in
promoting reactivity.” Bases that varied in strength and in metal
cation were also screened. For example, weak bases, such as
K;PO, and KOAc, were ineffective as were organic bases, such
as DIPEA and DBU. Strong bases, such as KOtBu, caused
protodebromination and decomposition of starting material. In
terms of metal carbonates, K,CO; was superior compared to its
Cs and Rb analogues, while Na,CO; was ineffective. A range of
solvents were also well tolerated. During the ligand screen,
some interesting observations were revealed. Steric limitations
were observed as PtBuy-HBF, was ineffective. In particular,
bidentate phosphines, such as dppf and rac-BINAP, were viable
ligands.”

We then explored the reaction scope (Scheme 3). For yields
<80%, we also ran the reaction with pivalate for comparison.
The chloro analogue lab was also viable, albeit pivalate was
required. Other N-protecting groups were also employed.
Despite previous difliculties, Boc-protected product 2b formed
efficiently with pivalate. Both benzyl and PMB also exhibited
excellent reactivity (2c—2d). gem-Dimethyl and tert-butyl
substituton afforded cyclized products in good yield (2e—2f).
We also tested different ring sizes. Much to our delight, the
cyclopentyl derivative 2g gave excellent conversion with
pivalate. Notably, cycloheptyl and cyclooctyl derivatives 2h—
2i failed to cyclize.1 Additionally, substrates 2a, 2b, 2d, and 2g
could also be scaled.

We also explored the effect of a-substitution (Scheme 4).
The cyano group (2k) impeded reactivity, and free carboxylic
acid 21 also failed to cyclize."" Similar to previous reports,"”
without a-substitution, ring opening occurred, providing access
to 2m."”? Additionally, we observed no reaction with other
related sp® systems indicative of the orthogonal reactivity of the
cyclopropyl moiety under the optimized reaction conditions
(see Supporting Information). We are currently developing
complementary conditions to target these noncyclopropyl sp®
systems.

It was also possible to cleave Boc and PMB groups to access
free NH-product 3 (Scheme 5).

Cognizant of recent studies by Blackmond and the Merck
Process Group on Pd'* and previous work by our group
involvin% Cu,”® we were curious to discover if dppf and rac-
BINAP'® were being oxidized in situ to their monophosphine

Scheme 3. Reaction Scope for Intramolecular Cyclopropyl
Direct Alkenylation
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“Unless otherwise stated, X = Br. Reactions were performed on 0.2
mmol scale. Yields with 30 mol % PivOH given in parentheses. 1.0
mmol scale. “0.72 mmol scale. “1.9 mmol scale. “Isolated as a mixture
of inseparable diastereomers. /1.2 mmol scale. £88% starting material
recovered.
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“Reactions were performed on 0.2 mmol scale. Yields with 30 mol %
PivOH given in parentheses.

Scheme 5. Deprotection of Boc and PMB Groups
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oxide analogues and if these ligands were in actuality the active
component for our reaction. Notably, in the presence of Pd(0)
sources, no reactivity was observed, even with the addition of
dba and pivalic acid additives (Table 1).'” These preliminary
experiments suggest that dppf(O) and BINAP(O) can function
as active ligands for this reaction.
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Table 1. Ligand Studies with dppf

Pd(OAc), (5 mol %)

Br J? dppf (10 mol %)
OE”/N coEt  KeCO3 (1.5 equi)
‘Me toluene, [0.2 M], 110 °C, 16 h
o)
1a

o
2a
entry variation from standard conditions” yield (%)
1 none 85
2 with 10 mol % dba 73
3 Pd(dba), instead of Pd(OAc), <20
4 Pd(dba), instead of Pd(OAc),, with 30 mol % PivOH <20

“Reactions were performed on 0.2 mmol scale. YDetermined via 'H
NMR using 1,3,5-trimethoxybenzene as an internal standard.

Within the field of asymmetric catalysis, several classes of
privileged ligands have been applied to direct functionalization
processes. Some of these ligands include amino acid
derivatives,'® TADDOL-phosphoramidates,19 NHC-based Ii-
gands,zo and BINEPINE-based ligands.21 In light of our ligand
screen, we hypothesized that hemilabile chiral bisphosphine
monoxide ligands might be suitable in our system to induce
enantioselectivity, thus adding to the toolbox of chiral ligands
for C—H functionalization.*

The Cramer group has previously shown success in applying
Feringa-based TADDOL-phosphoramidites toward enantiose-
lective arzlation and alkylation of cyclopropyl and related sp*
centers.”” In parallel with these observations, we also
discovered that Feringa-based BINOL phosphoramidite
(IPrMonophos)** could provide excellent enantioselectivity
(Scheme 6). Notably, this is a rare example of asymmetric

Scheme 6. Preliminary Conditions for Enantioselective
Direct Alkenylation Employing (a) IPrMonophos, (b)
BozPhos
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direct alkenylation with high enantioinduction. We were equally
delighted to discover that BozPhos, a ligand discovered in our
group, could access 2a with excellent enantioselectivity, albeit
only modest reactivity. Notably, when Pd(OAc), was
employed, reactivity was improved, but with diminished
enantioselectivity.”

Both IPrMonophos and BozPhos have yet to be explored in
asymmetric C—H functionalization processes. We are currently

investigating and optimizing both of these asymmetric reactions
and will provide a full report in due course.

In conclusion, we have developed a rare example of Pd-
catalyzed, intramolecular cyclopropyl direct alkenylation,
providing access to novel saturated azacycles. Ligand studies
revealed that bisphosphine monoxide ligands could function as
active ligands. Cognizant of this observation, we reported
examples of enantioselective direct alkenylation employing both
IPrMonophos and BozPhos. Notably, this is the first example of
enantioselective C—H functionalization employing a chiral
bisphosphine monoxide ligand and demonstrates the potential
for other ligands of this nature to be exploited in related C—H
functionalization processes.
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