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Abstract

Optically active benzyl-a-d alcohols have been synthesized in up to 89% ee by asymmetric hydrogenation of benzaldehyde-a-d
and its derivatives catalyzed by BINAP-Ru(II) complexes. A remarkable enhancement in enantioselectivities has been observed
for o-bromo- and o-methoxy-benzaldehyde-d, but moderate enantioselectivities for o-methyl and other m- and p-substituted

derivatives.
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1. Introduction

Isotopically labeled optically active primary alcohols,
RCDHOH, are important compounds for the mecha-
nistic studies of chemical and biochemical reactions [1].
Enantiomerically pure primary 1-deuterio alcohols have
been obtained through catalytic processes by using
enzymes. Though some chiral reducing agents have
been reported to reduce aldehydes in excellent enan-
tiomeric excesses [2,3], there exists only a few reports
on the catalytic asymmetric synthesis of 1-deuterio
alcohols by asymmetric hydrogenation of 1-deuterio
aldehydes [4]. Here, we report a novel synthesis of
alcohols of this type through asymmetric hydrogenation
of benzaldehyde-a-d [5] and its derivatives catalyzed by
BINAP-Ru(Il) complexes which are known to be highly
efficient catalysts for asymmetric hydrogenation of
prochiral carbonyl compounds [3¢,6,7]
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2. Experimental details and dispﬁssion

As catalysts, either a monomeric diacetate complex,
Ru(OAc),(binap) [8], or a halogen-containing dimeric
BINAP-Ru(II) complex, Ru,Cl (binap),(NEt,) [9], was
used. The choice of catalyst was dependent upon ‘the
solvent used. The reaction was carried out at room
temperature under a hydrogen pressure of 11 atm with
the substrate : catalyst ratio (S: C) of 85-100. Some se-
lected results are shown in Table 1. "H-NMR analysis
showed that no loss of deuterium occurred during
hydrogenation.

Reports on the hydrogenation of other carbonyl
compounds [6,7] show that higher enantiomeric ex-
cesses were obtained from reactions in methanol as
solvent (run 1) than in THF (29% ee). Interestingly,
the use of a mixture of THF and methanol increased
the yields and the rates of the hydrogenation without
significant changes in enantioselectivity (run 1 vs. 2).
For reactions in methanol or a mixture of methanol
and THF, Ru(OAc),(binap) was the catalyst of choice
because the halogen-containing catalyst Ru,Cl,-
(binap),(NEt,) afforded mainly dimethylacetal of the
starting aldehydes. The latter complex, however, was
used as catalyst in aqueous THF (run 7). It is notewor-
thy that the addition of a small amount of 0.2 N HCl
(ca. 5 equivs. to Ru) to the catalytic system in THF
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Table 1

Asymmetric hydrogenation of 1 catalyzed by BINAP—Ru(II) complexes *

Run Substrate Catalyst S:C Solvent Additive Time Yield ee 'H-NMR of ArCDHOH 3
2
) )2 %)° Major, 8 Minor, 8 Config.
1 la Ru(OAc),((R)-binap) 85 MeOH none 48 64 65 12.90 13.07 (8$)-(+)
2 1a Ru(OACc),((R)-binap) 90 THF/MeOH(1/1) none 48 >99 65 15.80 16.04 (8$)-(+)
3 1a Ru(OAc),((R)-binap) 100 THF aqHCl 24 >99 65 15.15 1537 $)-(+)
4 1b Ru(OAc),((R)-binap) 100 THF/MeOH(1/1) none 23 40 38 21.48 21.73 -
5 1b Ru(OAc),((R)-binap) 100 THF agHCl 24 >99 70 26.50 26.79 -
6 1b Ru(OACc),((R)-binap) 100 THF H,0 24 26 - - - -
7 1b Ru,Cl((S)-binap),(NEt;) 100 THF H,0 24 >99 70 15.56 15.39 -
8 1c Ru(OAc),((R)-binap) 100 THF aqHCl 24 >99 59 26.14 26.43 -
9 id Ru(OAc),((R)-binap) 100 THF aqHCl 24 67 73 13.41 13.65 -
10 le Ru(OAc),((R)-binap) 100 THF agHCl 24 >99 89 10.96 11.06 $H)-(+)*
11 1f Ru(OAc),((R)-binap) 85 THF aq.HCl 24 >99 82 17.04  17.42 -
12 2g Ru(OAc),((R)-binap) 85 THF aqgHCl 24 >99 70 19.80 20.13 -

' A solution of the substrate (1 mmol /5.0 mL) and the catalyst was stirred under H, (11 atm) at room temperature.
2 Determined by 'H.NMR analysis of the reaction mixture using tetramethylsilane as internal standard.
3 Determined by 'H-NMR spectroscopy in the presence of ca. 0.5 equiv. of tris[heptafluoropropyllhydroxymethyllene-( + )-camphoratoleuropium,

Eu(hfc),.

* The absolute configuration of 2e was determined after reduction of 2e to 2a by LiAlH 4

increased the ee values in some cases (runs 4-6). Some
effects of the addition of aqueous HCl on catalytic
activity and enantioselectivity were also found for the
hydrogenation of ketones catalyzed by Ru,Cl (binap)
(NEt ;) [6¢] and [RuCl(binapXbenzene)]Cl [6d].

Asymmetric hydrogenation of o-bromobenzalde-
hyde-a-d and o-methoxybenzaldehyde-a-d with hetero-
atom substituents in the ortho position gave the corre-
sponding benzyl-a-d alcohols 2e and 2f in 89% ee and
82% ee, respectively. Hydrogenation of o-methyl- and
other meta- and para-substituted benzaldehyde-a-d
derivatives proceeded in moderate enantioselectivities
(59-73% ee). These results suggest that a hetero-atom
located in a position near to the formyl group in the
substrates exerts some directing influence on enantios-
electivity through an interaction with the BINAP-Ru(II)
catalytic center. Such a halogen atoms effect has been
observed for asymmetric reduction of o-bromoace-
tophenone catalyzed by a similar catalytic system [6a].
Many functionalized olefins and ketones with hetero-
atom substituents at neighboring positions have also
been hydrogenated in high enantioselectivities by using
BINAP-Ru catalysts [3c,7]. The bromine atom in the
product (+)-2e was removed without racemization by
treatment with LiAIH, to give (§)-2a [10]. Thus, the
absolute configuration of (4 )-2e was determined to be
S. Hydrogenation of benzaldehyde-a-d (1a) by Ru
(OAC),((R)-binap) also gave (S)-predominant benzyl-
a-d alcohol [11], although the enantioselectivity was
only moderate (runs 1-3).

Catalytic asymmetric deuteration of benzaldehydes
was also carried out using a similar catalytic system.
However, the deuteration of benzaldehydes in a

methanol-containing solution was unsuccessful; it af-
forded, primarily, non-deuterated benzyl alcohols. This
result suggests that the D-H exchange between the
ruthenium-deuteride complex and methanol is rather
fast compared with the rate of deuteration. Deutera-
tion of benzaldehydes in CH ,OD was also unsuccessful
becuase the reaction proceeded very slowly (40% con-
version after 24 h) resulting in the formation of non-
deuterated products (2-3%).

3. Conclusion

In conclusion, the asymmetric hydrogenation of ben-
zaldehyde-a-d (1a) and its derivatives catalyzed by BI-
NAP-Ru(II) complexes gave the corresponding benzyl-
a-d alcohols in moderate to high enantioselectivities.
In the case of o-bromobenzaldehyde-a-d (le), the
enantiomeric excess of the product 2e reached 89%.
This is, to our knowledge, the first example of the
synthesis of optically active benzyl-a-d alcohols through
asymmetric hydrogenation of the corresponding alde-
hydes-a-d catalyzed by chiral transition metal com-
plexes. Further investigation to extend this method to
the synthesis of optically active aliphatic primary alco-
hols-a-d is now under investigation.
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