

Mendeleev Communications

Phosphates of bridgehead alcohols as putative inositol monophosphatase inhibitors: molecular design and synthetic approach

Olga N. Zefirova,*^{*a,b*} Ivan S. Raguzin,^{*a*} Vladimir V. Gogol,^{*a*} Evgeniya V. Nurieva^{*a*} and Maxim S. Belenikin^{*a*}

^a Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation.

Fax: +7 495 939 0290; e-mail: olgaz@org.chem.msu.ru

^b Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka,

DOI: 10.1016/j.mencom.2011.09.003

To enhance the lipophilicity of D-3,5,6-trideoxyinositol monophosphate, the IMPase inhibitor, its bridgehead analogues were suggested on the basis of molecular modeling. Adamantane-1,2- and 1,4-diols were converted into their 1-phosphates *via* the step of benzylic protection of the secondary hydroxy groups; the Baeyer–Villiger oxidation of 1-hydroxyadamantan-2-one occurred to initially cleave C(1)-C(2) bond.

Inositol monophosphatase (IMPase) plays an important role in the regulation of cell communication process in mammalian brain. The enzyme catalyzes the hydrolysis of *myo*-inositol-1-phosphate **1** and can be inhibited by lithium ions. This is believed to be essential in the lithium treatment of manic-depressive psychosis. Alternative inhibitors of IMPase are attractive therapeutic targets, but their application is limited by low bioavailability *in vivo* caused by their high polarity and inability to cross lipophilic blood-brain barrier. Thus, much effort was undertaken to overcome the requirement for polarity for IMPase inhibitors.^{1,2} One of the strategies suggests a design of the compounds interacting with hydrophobic regions of the enzyme active site.

To enhance lipophilicity of the known inositol monophosphatase inhibitor, namely, D-3,5,6-trideoxyinositol monophosphate 2,³ we proposed to use our method⁴ of the 'insertion' of the parent structure into lipophilic bicyclo[3.3.1]nonane or adamantane core. Herein, we carried out a molecular modeling study for the suggested templates and tried to elaborate the synthetic routes to the most promising structure.

Molecular docking[†] into the spatial model of the IMPase active site was performed for a number of phosphoric acid esters of bicyclo[3.3.1]nonane and adamantane alcohols **A–E** and **H-I** (Figure 1) with an alternation of two hydroxyl and one phosphate substituents similar to that in structure **2**.

Figure 1 Structures docked to the IMPase active site.

According to the modeling data, only one of the two possible ring flip conformers of **2** is present in the equilibrium mixture, the one with phosphate group in equatorial position (**2a**) being favorable for the enzyme binding. Thus, the functional carcasses of structures **A**, **B** and **H** entirely match with the structure of the parent inhibitor. Moreover, their additional (in comparison with **2**) rings are stretched to a vacant liphophilic pocket in the enzyme active site, the positioning of **H** and **A** being sterically more advantageous than that of **B** [Figure 2(*a*)].

Docking studies indicate that the structures C and I do not fit the enzyme binding site, and the binding mode of the structures D and E is also poor due to the improper location of hydroxyl at

Moscow Region, Russian Federation

[†] The molecular docking into three-dimensional structure of the human IMPase determined by X-ray crystallography (from Protein Data Bank) was performed with the Silicon Graphics Group computing complex using Sybyl software package for molecular modeling and QSAR studies.

Figure 2 Models of (a) H and (b) E bound at the active site of IMPase. The steric hindrance for the binding of E is clearly seen; the bridgehead core of H is pointed directly to the empty pocket.

 C^5 (for **D**) or at C^1 (for **E**) in bicyclo[3.3.1]nonane. Besides, an additional six-membered ring of **E** is pointed to the area occupied by C^6 -hydroxyl of D-3,5,6-trideoxyinositol monophosphate **2** [Figure 2(*b*)]. Interestingly, the modeling predicts a good binding affinity for bicyclo[3.3.1]nonane derivatives **F** and **G** (Figure 1) with functional carcasses different from **2a** but with close orientation of the three pharmacophoric groups.

In general, the docked compounds can be arranged in the following sequence in diminishing the predicted activity: $\mathbf{H} \rightarrow \mathbf{A} \rightarrow$ $\rightarrow \mathbf{F}/\mathbf{G} \rightarrow \mathbf{B}$, while the inhibitory properties of \mathbf{C} , \mathbf{D} , \mathbf{E} , \mathbf{I} being scarcely probable. Synthetic realization of this structural type requires both methods for the preparation of the corresponding bridgehead triols and their selective phosphorylation. As though the synthesis of compounds \mathbf{B} , \mathbf{F} and \mathbf{G} is complicated due to the absence of the substituents in the bridged positions, we tried to elaborate a synthetic route to structure \mathbf{H} with the best predicted activity.

First, we studied the applicability of the known phosphorylating agent, o-phenylene phosphorochloridate,^{5,6} in the reaction with known adamantane diols aiming to obtain phosphates **3** and **4**, structurally close to compound **H**.

Adamantane-1,2-diol **5** was prepared in four steps from adamantan-1-ol through the rearrangement of protoadamantanone.^{7–9} Phosphatation of diol **5** with equivalent amount of *o*-phenylene phosphorochloridate **6**⁵ (Scheme 1) led to the formation of the only secondary phosphate **7**,[‡] while benzylation of the secondary hydroxyl in diol **5** (structure **10**)[§] allowed us to obtain the desired compound **11** with a phosphate group at the bridged atom (the resonance at –5.49 ppm is observed in ³¹P NMR spectrum, and a signal of adamantane C¹ atom at 80.8 ppm in ¹³C NMR spectrum has J_{CP} 7.8 Hz). Hydrogenolysis of benzylic ether **11** over palladium-charcoal afforded secondary alcohol **12**, while 2-hydroxyphenyl moiety of the latter was removed by the action of bromine water with the formation of barium salt **13**. Ion exchange reaction of **13** with sodium sulfate in water gave

Scheme 1 Reagents and conditions: i, 6, NEt₃, THF, room temperature, then NEt₃, H₂O, room temperature, 51%; ii, Br₂/H₂O, Ba(OAc)₂, room temperature, 52%; iii, Na₂SO₄, room temperature, 48 h, 100%; iv, NaH, BnCl, DMF, room temperature, 15 h, 74%; v, 6, NEt₃, THF, room temperature, then NEt₃, H₂O, room temperature, 49%; vi, H₂, Pd/C, MeOH, room temperature, 5 h, 84%; vii, Br₂/H₂O, Ba(OAc)₂, room temperature, 42%; viii, Na₂SO₄, room temperature, 48 h, 100%.

the target sodium salt **3** (as stable trihydrate) in a quantitative yield.[¶] In ¹³C NMR spectrum of **3** C² and C¹ signals are observed at 76.77 (${}^{3}J_{CP}$ 3.8 Hz) and 80.62 ppm (${}^{2}J_{CP}$ 7.11 Hz), respectively, as distinct from the spectrum of isomeric phosphate **9** [70.6 ppm (C², ${}^{2}J_{CP}$ 6.9 Hz), 79.95 ppm (C¹, ${}^{3}J_{CP}$ 3.7 Hz)]. The only resonance at –0.34 ppm is present in ${}^{31}P$ NMR spectrum of compound **3**. The absence of barium ions in all sodium salts reported herein was confirmed by atomic emission spectroscopy.

Compound **4** was synthesized analogously (Scheme 2) from adamantane-1,4-diol **14** (prepared by reduction of 1-hydroxyadamantan-4-one¹¹ with lithium aluminum hydride). Compounds **14–18** and **4** were formed as mixtures of diastereomers at C⁴ in a ratio of 1:1 (as follows from the integral intensities of H–C⁴ resonances at ~3.6 or ~3.8 ppm in ¹H NMR spectra). Phosphate group in the sodium salt **4** is manifested at –0.1 ppm in ³¹P NMR spectrum.

These experiments confirmed the applicability of o-phenylene chloridophosphate for the phosphorylation of adamantane diols, so we tried to elaborate a synthetic route to adamantane-1,2,4-triol (corresponding to structure **H**). One of the easiest way seemed to be a rearrangement of 1-hydroxy-3-oxahomoadamantan-2-one

[‡] In ¹H NMR spectrum of compound **7** a characteristic resonance of C² proton at 4.35 ppm is shifted to a lower field in comparison with the one in the initial diol **5**. ${}^{3}J_{HP}$ of the C² proton with phosphorus atom is ~7 Hz, which conforms to the literature data for the secondary phosphates.¹⁰

[§] Attempts to use trimethylsilyl or tetrahydropyranyl protection groups failed (in the latter case the protective group was cleaved by *o*-phenylene phosphorochloridate with formation of compound **7**).

[¶] Barium and sodium salts **8** and **9** were also obtained (for the synthetic details and characteristics of new compounds, see Online Supplementary Materials).

Scheme 2 *Reagents and conditions*: i, NaH, BnCl, DMF, room temperature, 15 h, 72%; ii, 6, NEt₃, THF, room temperature, then NEt₃, H₂O, room temperature, 74%; iii, H₂, Pd/C, MeOH, room temperature, 5 h, 93%; iv, Br₂/H₂O, Ba(OAc)₂, room temperature, 46%; vi, Na₂SO₄, room temperature, 48 h, 100%.

(Scheme 3) as analogous to the method of synthesis of different adamantane-2,4-diol isomers.¹²

To obtain the necessary lactone, the corresponding ketol, namely 1-hydroxyadamantan-2-one **19** (prepared from adamantane-1,2-diol by Jones oxidation⁷) was subjected to Baeyer–Villiger oxidation with hydrogen peroxide in trifluoroacetic anhydride. However, this reaction led to a complex mixture of products, the predominant one (>70%) proved to be cyclohexane hydroxy-dicarboxylic acid **22**. The identification of **22** was based on the mass spectrometry data (m/z 214 [M–2H]⁺), ¹³C NMR data (two signals of carboxylic groups at 173.77 and 182.35 ppm and a resonance of carbon atom neighbour to hydroxyl at 68.32 ppm) and NMR data of the dimethyl ester of **22** obtained by treatment of the acid with ether solution of diazomethane (see Online Supplementary Materials).

 †† Another synthetic way to ketoacid 20 has been reported by Renzoni and Borden. 13

 $^{\pm\pm}$ Interestingly, similar deformation of adamantane core to cyclohexane derivative in one synthetic operation was observed only under severe oxidative conditions (O₃/SiO₂ for 2,4-didehydroadamantane).¹⁴

Baeyer–Villiger reaction mixture contained also bicyclic keto acid **20** (m/z 181 [M–H]⁺), the formation of which can be rationalized by the ring opening of the unstable isomeric lactone – 1-hydroxy-2-oxahomoadamantan-3-one (Scheme 4).^{††} Further oxidation of **20** leads to lactone **21**, a small amount of which has also been detected in the reaction mixture (m/z 197 [M–H]⁺). Obviously, acid **22** is a product of lactone **21** ring opening.^{‡‡}

It should be mentioned, that oxidation only at the OH-substituted carbon of 1-hydroxyadamantan-2-one **19** was not expected and represents an example of highly regioselective proceeding of Baeyer–Villiger reaction. Among structurally similar α -substituted ketones regioselectivity of this type was observed in the oxidation of *cis*-4-*tert*-butyl-2-fluorocyclohexanone, the major product resulting from migration of the CHF substituent (though still both isomeric lactones were isolated in a ratio of 7.2:1 in CH₂Cl₂).¹⁵

Attempts to carry out Baeyer–Villiger reaction for **19** with *m*-chloroperoxybenzoic acid or hydrogen peroxide in *tert*-butanol in the presence of SeO_2 as well as introduction of the bulky substituent to the substrate and subsequent oxidation of 1-benzyl-oxyadamantan-2-one also led to the formation of complex mixtures, in which the desired lactone was not detected.

In summary, we have suggested a new class of putative IMPase inhibitors on the basis of molecular modeling and proved the applicability of *o*-phenylene phosphorochloridate for the bridgehead polyols phosphorylation. Baeyer–Villiger oxidation of 1-hydroxyadamantan-2-one was found to proceed regioselectively towards unstable 1-hydroxy-2-oxahomoadamantan-3-one and thus cannot be used in the synthetic route to adamanatane-1,2,4-triol. Studies of the alternative preparative strategies are ongoing and will be reported in due course.

This work was supported by the Russian Foundation for Basic Research (project no. 03-09-879). The authors are grateful to Dr. A. G. Borzenko for providing the atomic emission spectroscopy experiments.

Online Supplementary Materials

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.mencom.2011.09.003.

References

- 1 B. Potter and D. Lampe, Angew. Chem., Int. Ed. Engl., 1995, 34, 1933.
- 2 D. J. Miller and R. K. Allemann, Mini-Rev. Med. Chem., 2007, 7, 107.
- 3 J. Schulz and D. Gani, J. Chem. Soc., Perkin Trans. 1, 1997, 657.
- 4 O. N. Zefirova, E. V. Nurieva, V. I. Chupakhin, I. S. Semenova, D. I. Peregud, M. V. Onufriev and N. V. Gulyaeva, *Mendeleev Commun.*, 2010, 20, 323.
- 5 T. A. Khwaja, C. B. Reese and J. C. M. Stewart, J. Chem. Soc., 1970, 2092.
- 6 H. Böhringer and H. Vogt, Arch. Pharm., 1977, **310**, 894.
- 7 A. N. Abdel-Sayed and L. Bauer, Tetrahedron, 1988, 44, 1873.
- 8 B. D. Cuddy, D. Grant and M. A. McKervey, J. Chem. Soc. D: Chem. Commun., 1971, 27.
- 9 Z. Majerski and Z. Hamersak, Org. Synth., 1979, 59, 147.
- 10 E. Pretsch, P. Bühlmann and C. Affolter, Structural Determination of Organic Compounds. Tables of Spectral Data, Springer, 2004.
- 11 S. Hirsl-Starcevic and Z. Majerski, J. Org. Chem., 1982, 47, 2520.
- 12 D. Faulkner and M. A. McKervey, J. Chem. Soc. C, 1971, 3906.
- 13 G. E. Renzoni and W. Th. Borden, J. Org. Chem., 1983, 48, 5235.
- 14 D. S. Teager and R. K. Murray, Jr., J. Org. Chem., 1993, 58, 5548.
- 15 C. M. Crudden, A. C. Chen and L. A. Calhoun, *Angew. Chem. Int. Ed.*, 2000, **39**, 2852.

Received: 21st January 2011; Com. 11/3667