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Discovery and SAR development of thienopyridones: A class
of small molecule AMPK activators
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Abstract—AMP-activated protein kinase (AMPK) is well established as a sensor and regulator of intracellular and whole-body
energy metabolism. A high-throughput screen was performed in order to identify chemotypes that are bound by AMPK. A novel
thienopyridone compound (1) was identified and subsequently optimized. The structure–activity relationships that emerged from
this effort are described.
� 2007 Elsevier Ltd. All rights reserved.
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Obesity and associated diseases like type 2 diabetes, the
metabolic syndrome, hypertension, and atherogenic
dyslipidemia represent major health risks around the
world. An estimated 194 million people have either type
1 or 2 diabetes, according to the International Diabetes
Federation. Type 2 diabetes is the most common and
fastest growing form of the disease and is often
complicated by obesity. AMPK (adenosine monophos-
phate-activated protein kinase), a heterotrimeric serine/
threonine kinase, is well established as a key sensor
and regulator of intracellular and whole-body energy
metabolism.1 Activation of AMPK alters carbohydrate
and lipid metabolism to increase fatty acid oxidation
and glucose uptake and decrease fatty acid and choles-
terol synthesis.2 Through its central role in the regula-
tion of glucose and lipid metabolism, AMPK is
emerging as an attractive molecular target for the treat-
ment of diabetes, metabolic syndrome, and obesity.2,3

There have been a number of reports of small molecule
regulators of AMPK, such as AICAR, metformin and
rosiglitazone.4 These are all indirect activators, however,
and thus to further elucidate the physiological conse-
quences of AMPK activation, our laboratory sought
to identify small molecules that directly interact with
this enzyme.
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As part of our effort to identify and assess the effects of
AMPK activation on appropriate metabolic parameters,
a high-throughput screening was performed from which
several structurally diverse AMPK activators were iden-
tified. This report describes the systematic evaluation of
the thienopyridone agonist 1, in addition to the struc-
ture–activity relationships (SAR) of the resultant
analogs.

We initiated our efforts with a resynthesis of the HTS hit
1 (Fig. 1), followed by the preparation of several direct
analogs. The synthesis of the thienopyridone com-
pounds is outlined in Scheme 1.5a,6 Briefly, acetophe-
none derivatives were treated with ethyl cyanoacetate,
sulfur, and morpholine, heated at 60 �C to afford the
2-amino-4-aryl-thiophene-3-carboxylic acid ethyl esters
2. The appropriate ethyl ester 2 was then reacted with
cyanoacetic acid chloride, which was made fresh by
treating cyanoacetic acid with PCl5 in dichloromethane,
H

1

AMPK Rat liver EC50 (μM) 38

Figure 1. High-throughput screen hit: thienopyridone compound 1.
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Scheme 1. Reagents and conditions: (a) CH2(CN)CO2Et, S, morphol-

ine, EtOH, 60 �C (20–45%); (b) CH2(CN)CO2H, PCl5, Et3N, DCM

(90%); (c) NaH, THF, reflux (80%); (d) SOCl2, DCM (90%); (e)

C5H5NHBr3, AcOH or NCS/NBS, AcOH (30–60%).

Table 1. SAR of 3-aryl thienopyridones
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Compound R1 R2 AMPK Rat liver

EC50
a (lM)

1 H H 38

5 3-OH H 38

6 4-OH H 20

7 3,4-OCH2O H 20

8 4-F H 84

9 4-Cl H 81

10 4-Br H 72

11 4-COOMe H 55

12 4-Allyl H 40

13 4-OCH2OCH3 H 8

14 H Cl 3.7

15 H Br 5.8

16 4-OH Cl 2

17 4-F Br 10

18 H NO2 Inactive

19 H 2-OH-C6H4 Inactive

a All compounds were >95% pure by HPLC and characterized by 1H

NMR and HRMS. Values represent an average of at least two

determinations.
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Scheme 2. Reagents and condition: (a) Diazomethane, diethyl ether

(50%); (b) NaH, MeI, THF, reflux (40%).
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in the presence of triethylamine at 60 �C to provide the
2-(2-cyano-acetylamino)-4-aryl-thiophene-3-carboxylic
acid ethyl esters 3. Following this step, the ethyl esters 3
were treated with sodium hydride in tetrahydrofuran at
temperatures ranging from 25 to 80 �C to provide the fi-
nal thienopyridone compounds. The final products were
very polar and typically required reverse-phase HPLC
purification.

Compound 1, which showed modest AMPK activity (rat
liver EC50, 38 lM),7 was our starting point for optimiza-
tion (Table 1). The SAR investigation was initiated with
the functionalization of the unsubstituted 3-phenyl ring.
Derivatization of this ring with either a meta- or para-
hydroxy group either retained or had a twofold
improvement of activity of parent 1, respectively (see 5
and 6, Table 1). Tying these hydroxyls into a five-mem-
bered ring to produce the methylenedioxyphenyl analog
7 also improved the activity twofold, resulting in an
EC50 of 20 lM. Other fused ring systems resulted in a
diminution of AMPK activity, along with various
ortho-substitutions (data not shown). Since the para-
substitution position appeared to be the most produc-
tive position for increasing the potency, several more
analogs with substituents at this position were prepared.
Replacement of the hydroxyl group in 3 with fluoro,
chloro or bromo afforded analogs that had lowered po-
tency as compared to parent 1. While no gain in potency
was observed with the para ester 11, the allyl-substituted
analog 12 resulted in a compound equipotent to 1. Fi-
nally, capping the para-hydroxyl moiety of 6 with a
methoxymethyl group afforded the most potent analog
in this group of compounds, as analog 13 showed a sig-
nificantly improved EC50 of 8 lM.
Encouraged by the increase in AMPK activation affor-
ded by the appropriately substituted phenyl analogs,
we turned our efforts towards the incorporation of func-
tionality at the 2-position of the thienopyridine core. 2-
Chloro and 2-bromo substitution was effected according
to Scheme 2. Briefly, 4-phenylthiophene intermediate 3
was treated with thionyl chloride in dichloromethane
to afford the chlorinated intermediate 4 in 90% yield.
Treatment with sodium hydride rapidly afforded the fi-
nal cyclized product in good yields. Alternatively, the



Table 2. SAR of 5-substituted thienopyridones
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Compound R AMPK Rat liver EC50
a (lM)

25 Ph Inactive

26 3-OMe-C6H4 180

27 2-Thiophene 183

28 –COOMe 175

29 –NMe2 Inactive

30 Cl 88

31 H Inactive

a All compounds were >95% pure by HPLC and characterized by 1H

NMR and HRMS. Values represent an average of at least two

determinations.
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2-chlorinated analogs could also be prepared by the
treatment of analogs 1 and6 with N-chlorosuccinimide,
although the yields in this transformation were low
(30%). The 2-brominated analogs were prepared in a
straightforward manner by the treatment of analogs 1
or 8 with NBS, affording the desired products in about
60% yield.

Evaluation of these analogs in our binding assay re-
vealed that functionalization with electron withdrawing
groups at the 2-position significantly improved AMPK
activation. As demonstrated in Table 1, analogs 14
and 15 had EC50 values of 3.7 and 5.8 lM, respectively.
Compound 16, the 2-chloro-substituted analog of 6,
showed a tenfold improvement in activity relative to
the parent analog. This trend was further present in ana-
log 17. In contrast, incorporation of larger electron-
withdrawing groups, such the nitro moiety present in
18,8 resulted in a loss of potency. The same result was
observed with the phenyl-substituted compound 19.9

We next evaluated the requirement of the hydroxyl moi-
ety on the thienopyridone core. To this end, the chemi-
cal reactivity of the acidic-OH and -NH were
investigated. While basic alkylation conditions (sodium
hydride, methyl iodide) exclusively afforded N-alkylated
products, O-alkylation required more neutral conditions
(CH2N2) for an efficient and selective transformation
(Scheme 2). Finally, the amino analog 24 was prepared
in an analogous manner to 1 (see Scheme 3). However,
all of these modifications proved unproductive, as ana-
logs 20–24 were inactive against rat liver AMPK.

Our final exploration was directed towards replacement
of the 5-cyano functionality on the pyridone ring. As
shown in Scheme 3, this was achieved analogously to 1
by switching from cyanoacetyl chloride to various
substituted acyl chlorides in the coupling step prior to
cyclization. Our attempts to generate the 5-carboxylic
acid analogs were unsuccessful, as the attempted hydro-
lysis of the nitrile under acidic conditions only afforded
the corresponding decarboxylated product 31.
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Scheme 3. Reagents and conditions: (a) CH2(CN)CO2H, PCl5, Et3N,

DCM (90%); (b) NaOEt, EtOH, reflux (43%); (c) NaH, THF, reflux or

KHMDS, THF, PhCH3, 0 �C–rt, (20–70%).
As shown in Table 2, only the chloride substituent could
effectively replace the cyano group in the pyridone ring
of 1 (analog 30). Other substitutions resulted in a dimi-
nution or complete loss of AMPK activity up to the con-
centrations tested.

The systematic investigation of the HTS lead structure 1
identified several productive areas for optimization. Spe-
cifically, 3-phenyl ortho-substitution led to improve-
ments as much as tenfold, while 2-substitution
afforded analogs with improvements over fortyfold.
Subsequent reports will disclose further optimization
of these analogs, as well as their evaluation in in vivo
models of glucose lowering.
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