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sv: Unexpected differences in the aluminium bromide-catalyzed rearrangement behaviour 
of 1,2-endo-trimethylenenorbornane (1) and its 1,2-exo-isomer (2) are interpreted. Isotopic 
labellti~tudies indicate that revei%ible abstract?% of the tertiary 2-endo hydride in 2 
does not occur (Scheme 1). Instead, rearrangement to 6 is favored. The label scrambling-in 
the final product, adamantane (8), is attributed to degenerate isomerization in the pmto- 
adatyl precursor, 1. 

Since the discovery of the adamantane rearrangement in 1957,2 the elucidation of the mechanism 

of this necessarily complex transformation has progressed significantly. 
3-6 

The recent report 

by Klester, J&&i, and Ganter7 describing the rearrangement of 1,2-endo-trimethylenenorbornane 

(i) with aluminium bromide prompts us to describe our results with the corresponding 1,2-E- 

isomer (g), 13C labelled at the position designated by the dot. 1,8 Scheme 1 presents a 

mechanistic interpretation of the intriguing differences in behaviour of 1 and 2 described by 

Ganter, et al. Previous studies had established that the rearrangement of 2 to adamantane 8 

involves 2,6-endo-trimethylenenorbornane (6) and protoadamantane (1) intermediates. 
1,3-6,9 - 

Rearrangment of 
13 
C labelled 2 with AlBr3 in CS2 solution at -15'C gave 6; 

13 
C-NMR analysis 

indicated the label to be at a single position (within C+ symmetry). Unexpectedly, _2 rec- 

overed after partial rearrangement to 5, did not reveal %y label scrambling which would have 

been expected if intermediate ions 2 and 3' had been involved. In principle, reversible 

abstraction of the tertiary 2-endo hydride in 2 (to give 2) might have been expected. The 

results indicate that this abstraction is not able to compete with attack at other positions, 

even though these are secondary. Thus, abstraction of a hydride from C-6 in 2 would lead 

(via ions 2 and 2) to 5 without label scrambling either in recovered 2 or in 6. 
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The results of Canter, et al, with A7 nicely compliment these findings. Consistent with its 

much higher strain energy,4 1 is much more reactive than 2 with alwninium bromide catalysts. 

While hydrocarbons like cis- and trans-decalin epimerize 
1U 

- under such conditions, this does 

not occur with 2; 2 is not detected in the products. 
7 

However, abstraction of a secondary hydride from 1 cannot lead to 6, directly; an impossibly 

strained 2-=,6-endo-trimethylenenorbornane stereoisomer of 2 would result instead. Thus, 

a gives 3 directly; equilibration via _3' leads to the expected label scrambling. 
11 

Consistent 

with our results, 3 does not give 2; we suggest that a 6,2-hydride shift leading from 3 to 9 - _ 

occurs more rapidly. Further reaction then gives ,S and g. 

The subsequent rearrangement of labelled 6_ is also of interest. Transformation of g to 

adamsntane (g) by the simplest conceivable pathway should have resulted in exclusive labelling 

at the bridgehead position (&1-13C). Instead, extensive scrambling of the label in 8 

occurred. Although the small amount of 2 produced as an intermediate in the admtane rearr- 

angement precluded 
13 
C analysis of the positional labelling, we believe that the scrambling in 

$ occurs via ionic intermediates involved in the rearrangement step from 1. Although partial 

automerization of adamantane-2- 
14 
C by AlBr has been observed, 

12 
3 

the conditions were much 

more drastic than those employed here. As a check, we prepared protoadamantane-4- 13c ($3 

Peatient with AlBr3 under conditions similar to those used to the rearrangement of f! gave 

adamantane-l-13C (10) exclusively; thus, -- no adamantane automerization took place. 

Instead, the label scrambling observed in g may occur according to the mechanism in Scheme 

2. Intermediate cation X2, generated directly from 1; along the route leading to 8, can 

undergo degenerate rearrangement to 12' and thus plays the key role. -- 

We thank Dr. Canter for exchanges of information. This work, initiated at Princeton 

University, was supported by the National Institutes of Health and by the Fonds der 

Chemischen Industrie. 
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