
Oxidatively Induced Aryl−CF3 Coupling at Diphosphine Nickel
Complexes
James R. Bour,† Pronay Roy,† Allan J. Canty,‡ Jeff W. Kampf,† and Melanie S. Sanford*,†

†Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
‡School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia

*S Supporting Information

ABSTRACT: This communication describes the synthesis of a series
of diphosphine NiII(Ph)(CF3) complexes and studies of their
reactivity toward oxidatively induced Ph−CF3 bond-forming reductive
elimination. Treatment of these complexes with the one-electron
outer-sphere oxidant ferrocenium hexafluorophosphate (FcPF6)
affords benzotrifluoride, but the yield varies dramatically as a function of diphosphine ligand. Diphosphines with bite angles
of less than 92° afforded <10% yield of PhCF3. In contrast, those with bite angles between 95 and 102° formed PhCF3 in yields
ranging from 62 to 77%.

Trifluoromethyl substituents have emerged as increasingly
important moieties in pharmaceutical and agricultural

chemistry.1 As such, there has been substantial interest in the
development of metal-mediated/-catalyzed cross-coupling
methods for the introduction of CF3 groups onto (hetero)-
aromatic rings.2 In many of these transformations, aryl−CF3
bond-forming reductive elimination has been identified as a
kinetic bottleneck. Stoichiometric organometallic studies are
frequently used to identify metal/ligand combinations and
reaction conditions that facilitate this challenging step of the
catalytic cycle.3−7 Despite significant efforts in this area, metal
complexes that participate in high-yielding aryl−CF3 bond-
forming processes remain relatively rare.3−7

Recent work from our group has explored aryl−CF3
coupling at isolable high-valent nickel centers. For instance,
we have shown that the tris(pyrazolyl)borate (Tp) complexes
TpNiIV(CF3)2(Ph)

6 and TpNiIII(CF3)(Ph)
7 undergo Ph−CF3

bond-forming reductive elimination under mild conditions.
Similarly, van der Vlugt and Klein have recently demonstrated
oxidatively induced aryl−CF3 coupling from a NiII pincer
complex.8 However, this promising reactivity has not yet been
translated to Ni catalysis, largely due to limitations associated
with the Tp/pincer ligand scaffolds. While these tridentate
ligands are well suited for obtaining isolable high-valent Ni
complexes, they limit the open coordination sites available for
other steps of most catalytic cycles. Thus, a key objective is to
translate these promising examples of high-valent Ni-mediated
aryl−CF3 coupling to complexes bearing more catalytically
relevant ligands.
In this communication, we demonstrate that the treatment

of NiII diphosphine (P∼P) complexes of general structure
(P∼P)NiII(CF3)(aryl) with ferrocenium hexafluorophosphate
(FcPF6) leads to aryl−CF3 coupling at room temperature. A
competing unproductive decomposition pathway is identified
and mitigated. Furthermore, ligand effects are systematically
explored. These studies show that phosphines with bite angles

between 95 and 102° afford the highest yields in this
transformation.
We initially targeted (dppe)Ni(CF3)(Ph) (1a; dppe = 1,2-

bis(diphenylphosphinoethane) due to the widespread use of
dppe as a ligand in nickel cross-coupling catalysis.9 Complex 1a
was synthesized via the route outlined in Scheme 1. The CF3

ligand was installed by oxidative addition of trifluoroacetic
anhydride to in situ generated Ni0(PPh3)2. Carbonyl
deinsertion afforded intermediate A,10 which underwent ligand
substitution with dppe to afford B. Finally, transmetalation
between B and 0.55 equiv of ZnPh2 afforded 1a in 65%
isolated yield.11 Filtration of a THF solution of 1a through a
plug of basic alumina proved critical to remove Lewis acidic
ZnII byproducts that can affect the reactivity of this complex.
Following recrystallization from THF/pentane, compound 1a
was characterized by 1H, 13C, 19F, and 31P NMR spectroscopy,
HRMS, and single-crystal X-ray diffraction (vide infra).
We first evaluated the reactivity of this NiII complex toward

direct Ph−CF3 coupling (Scheme 2a). Heating a solution of 1a
in acetone at 70 °C for 14 h resulted in no detectable
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Scheme 1. Synthetic Route to Complex 1a
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formation of benzotrifluoride. Instead, 1a decomposed to
generate a complex mixture of paramagnetic products.
Importantly, similar observations have been made independ-
ently by Vicic12 and Grushin13 in studies of other (P∼P)-
N i I I ( a r y l ) (CF3) comp l exe s [ (P∼P) = 1 ,2 -b i s -
( d i i s o p r o p y l p h o s p h i n o ) e t h a n e a n d 4 , 5 - b i s -
(diisopropylphosphino)-9,9-dimethylxanthene, respectively].
On the basis of our work with the NiIII model complex

TpNiIII(CF3)(Ph),
7 we hypothesized that the one-electron

oxidation of 1a would induce Ph−CF3 coupling. To guide the
selection of an appropriate oxidant, cyclic voltammetry (CV)
of 1a was conducted in 0.1 M NBu4PF6 in MeCN at a scan rate
of 100 mV/s. The CV of 1a under these conditions shows an
irreversible oxidation wave with an onset potential of ∼+0.1 V
and a peak potential of +0.56 V vs Fc/Fc+ (Figure S11a).
These results suggest that ferrocenium hexafluorophosphate
(FcPF6) should be a suitable oxidant in this system. Indeed,
the treatment of 1a with 1.3 equiv of FcPF6 resulted in
complete consumption of the NiII starting material within 30
min at room temperature.14 Analysis of the crude reaction
mixture by 19F NMR spectroscopy revealed the formation of
Ph−CF3 (2% yield) and PhC(O)F (19% yield), along with a
mixture of paramagnetic Ni byproducts (Scheme 2b).
Attempts to isolate/characterize Ni species from this trans-
formation or to improve the yield of Ph−CF3 by varying the
solvent or temperature proved unsuccessful. Analogous results
were obtained with the 4-fluorophenyl analogue 1b, which
reacted with FcPF6 to afford a 1% yield of p-FC6H4CF3 and a
15% yield of the corresponding acid fluoride (eq 1).

On the basis of literature precedent with closely related
(dppe)PdII(aryl)(CF3) complexes,3d,15 we hypothesize that
PhCOF is formed via an initial α-fluoride elimination from
1a,b (Scheme 3, step i). Subsequent reaction of the transient

difluorocarbene intermediate with adventitious water would
generate a Ni−carbonyl species (step ii), which can then
undergo 1,1-migratory insertion (step iii) and reductive
elimination to release the acid fluoride (step iv). If this
mechanism were operating, the addition of excess H2O should
accelerate the hydrolysis reaction (step ii) and also promote
carboxylic acid formation via steps v and vi in Scheme 3. To
test this proposal, we added 75 equiv of H2O to the reaction
mixture of 1b with FcPF6. Under these conditions, 4-
fluorobenzoic acid was formed in 65% yield, consistent with
the pathway outlined in Scheme 3.16

We hypothesized that the relative rates of undesired α-
fluoride elimination versus the targeted aryl−CF3 coupling
could be modulated by changing the phosphine ligand.
Previous studies of reductive elimination reactions from
group 10 metal centers have shown that increasing the bite
angle of the diphosphine is an effective strategy for accelerating
C(sp2)−X coupling.17 As such, we next evaluated a series of
(P∼P)NiII(Ph)(CF3) complexes, where P∼P = diphosphine
ligands with varied bite angles. The dppbz (2; 1,2-bis-
(d ipheny lphosphino)benzene , dppp (3 ; 1 ,3 -b i s -
(diphenylphosphino)propane), dppb (4 ; 1 ,4-bis-
(diphenylphosphino)butane), diop (5; 2,3-O-isopropylidene-
2,3-dihydroxy-1,4-bis(diphenylphosphino)butane), dppf (6;
1,1′-bis(diphenyl phosphino)ferrocene), and xantphos (7;
4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) complexes
were all synthesized using the procedure outlined in Scheme 1.
31P and 19F NMR spectroscopic analyses of 2−7 show that all
but 7 adopt a cis geometry in solution.18

We next examined the reactions of 2−7 with FcPF6. The
dppbz complex 2 did not undergo productive Ph−CF3
coupling upon treatment with FcPF6. In contrast, complexes
with larger bite angle phosphines (3−7) all reacted with FcPF6
to afford PhCF3 in yields ranging from 3% (for 7) to 77% (for
6).19−21 As summarized in Table 1, ligands with bite angles
between 95 and 102° appear to be optimal for this reaction. In
contrast, modest coupling yields are observed for diphosphines
with smaller bite angles (between 86 and 92°). Finally, as
expected, the trans configuration of the xantphos complex 7
results in a low yield of PhCF3.

Scheme 2. (a) Thermolysis of NiII Complex 1a (No Ph−CF3
Coupling) and (b) Oxidatively Induced Ph−CF3 Coupling
from 1a

Scheme 3. Proposed Pathway to Acid Fluoride and
Carboxylic Acid Products

Table 1. Oxidatively Induced Ph−CF3 Coupling as a
Function of Phosphine Liganda

compound ligand calcd bite angle (deg)b yield Ph−CF3 (%)a

2 dppbz 86.0 <1c

1a dppe 87.7 (86.8) 2
3 dppp 91.9 7
4 dppb 95.3 75d

5 diop 102 62
6 dppf 100.6 (100.2) 77
7 xantphos trans 3

aYields determined by 19F NMR spectroscopy relative to 4,4′-
difluorobiphenyl. bBite angles determined by DFT (see p S31 in the
Supporting Information). Experimental bite angles from the X-ray
crystal structures are shown in parentheses. cReaction performed in 2/
5 benzene/acetone due to the low solubility of 2 in acetone. dDue to
the low stability of 4, this complex was generated and then reacted
with FcPF6 in situ.
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A final set of studies focused on a detailed comparison of
complex 1a (which affords <5% yield in the oxidatively
induced PhCF3 coupling) with complex 6 (which affords the
highest yield of 77%). First, X-ray crystal structures of both 1a
and 6 were obtained, and the respective ORTEP diagrams are
shown in Figure 1. These structures reflect the anticipated

increase in phosphine bite angle upon moving from dppe
(86.8°) to dppf (100.2°). This is accompanied by an increase
in the acuteness of the C(1)−Ni−C(2) angle from 89.6° in 1a
to 83.2° in 6. Literature studies have shown that this angle has
a major effect on the rates of other reductive elimination
reactions.17 With the larger bite angle phosphine, both the Ni−
CF3 and Ni−P bond distances are significantly longer (by
∼0.03 and ∼0.05 Å, respectively), likely reflecting increased
steric congestion at the Ni center with dppf relative to dppe.22

In contrast, the Ni−Ph bond distances are identical in the two
complexes (Ni−C(2) = 1.918 Å).
The electronic properties of 1−6 can also be compared. As

shown in Table 2, the CO stretching frequencies of the

zerovalent dicarbonyl complexes (P∼P)Ni(CO)2 show no
clear trends with respect to the yield of PhCF3 from the
analogous (P∼P)Ni(CF3)(Ph) species.23 For example, the
dicarbonyl analogues of compounds 2−4 have nearly identical
CO stretching frequencies, but only 4 affords a high yield of
PhCF3 upon treatment with FcPF6. In addition, cyclic
voltammetry (CV) was conducted with compounds 1 and 6

in 0.1 M NBu4PF6 in MeCN at a scan rate of 100 mV/s.24

Both CVs show irreversible oxidation waves, with nearly
identical onset potentials (at ∼+0.1 V) and similar peak
potentials (+0.56 V for 1a and +0.35 V for 6). Furthermore,
DFT calculations25 on 6+, the product of single-electron
oxidation of 6, show that the unpaired electron is localized on
nickel. This suggests that the redox chemistry occurs at the Ni
center rather than at Fe. Taken together, these data strongly
suggest that the difference in PhCF3 yield between these
complexes results from steric rather than electronic differences
between the different diphosphine ligands.
In summary, this work shows that (P∼P)NiII(CF3)(Ph)

complexes react with FcPF6 to afford Ph−CF3 coupling under
mild conditions. α-Fluoride elimination from the Ni−CF3
complex is a competing side reaction in these systems. The
highest yields are obtained with P∼P ligands that have bite
angles close to 100°, such as dppf, diop, and dppb. The ligand
effects elucidated herein could ultimately inform the develop-
ment of NiI/III-catalyzed trifluoromethylation reactions.
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