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Highlights

« A series of luminogens containing formamide or fluorenone units, based on fluorene,
have been synthesized.

« Fluorene-based luminogens with formamide units exhibited aggregate fluorescence
change.

« Fluorene-based luminogens with fluorenone unit exhibited AIEE characteristics.
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ABSTRACT

A series of luminogens containing formamide or ferone units, based on fluorene,
have been synthesized and characterized by NMRrepecpy, mass spectrometry and
elemental analysis. Their aggregate fluorescencangsh and aggregation-induced
emission enhancement (AIEE) characteristics wevesingated by luminescence and
UV/Vis spectroscopies. The results indicate thahihogensld and 2d, containing
formamide units, exhibit significant fluorescenceloc changing upon aggregate
formation, which is a newly observed uncommon artdresting aggregation-induced
emission phenomenon. Although the lumino@ein with one fluorenone unit and one
fluorene unit, was weakly emissive in solution, was highly fluorescent in the
aggregated state and demonstrates typical AIEEactaistics. In comparison witsd,

the luminogertd with one fluorenone unit and two fluorene unitewsbad weaker AIEE
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behavior. In thin-films and in the solid state, inogenld shows intense yellow-green
emission, and other luminogens show strong yellotteng. Among these luminogens,

4d exhibits the highest solid-state emission quantieidy

Keywords. formamide; fluorenone; fluorene; aggregate flsoemce change; AIEE

1. Introduction

Research into efficient luminescent organic molesuhas attracted widespread
attention on account of their practical applicasidn sensors, displays, storage and
photoelectronic devices [1-5]. When aggregatedhen dcondensed phase, emission is
often partially or wholly quenched, which largelynits practical applications of
fluorophores. Generally this phenomenon is knowraggregation-caused quenching
(ACQ) [6-7]. In 2001, Tangt al. observed an unusual fluorescence phenomenon in
some propeller-shaped molecules known as aggregatiiced emission (AIE) [8].
These AIE luminogens are weakly-emissive or nonssivé in solution, but exhibit
intense emission upon aggregate formation (as @ppmsthe ACQ effect) [9-10Ylany
research groups are now working in the field of Ad#search and this has led to the
synthesis of many new AIE fluorogens [11-25]. I®20Parket al. reported that a new
kind of organic CN-MBE nanoparticles displayed imgely enhanced fluorescence

emission, referred to as aggregation-induced eamissnhancement (AIEE) [26ince



then, many AIEE materials have also been prepaledaddition, oligomers and
polymers with fluorene as a skeleton are valuablediates for use in light emitting
diodes because of their tunable electronic progeidind facile structural fragility. It is
therefore an exciting modern challenge to syntleesw fluorescent molecules based
on fluorene with AIE or AIEE characteristics. Hoveeyvthe interrelated instance is quite
rare [27]. Herein, we designed and synthesizediassef novel fluorescent molecules
based on fluorene and investigated their aggrefjatgescence change and AIEE

characteristics.

2. Materials and methods
2.1. Experimental

General: All manipulations were carried out under a&xgon atmosphere by using
standard Schlenk techniques, unless otherwise dsta#t# starting materials were
obtained commercially as analytical-grade and usathout further purification.
Compoundsla [28], 1b [29], 2a [30], 2b [29], 3a [31], 3b [29], 3c [27], 4c [32] and
N-(4-hydroxyphenyl)formamide [33] were prepared pyocedures described in the
corresponding literature$d NMR (400 MHz) and*C NMR (100.6 MHz) spectra were
collected on American Varian Mercury Plus 400 smeueter (400 MHz)!H NMR
spectra are reported as followed: chemical shifijgm ¢ ) relative to the chemical shift

of TMS at 0.00 ppm, integration, multiplicities @rglet, d=doublet, t=triplet,



m=multiplet), and coupling constant (HZJC NMR chemical shifts reported in ppi) (

relative to the central line of triplet for CDCat 77 ppm. EI-MS was obtained using
Thermo scientific DSQI. Elemental analyses (C, H, N) were performed by th
Microanalytical Services, College of Chemistry, QZNJV-Vis spectra were obtained
on U-3310 UV Spectrophotometer. Fluorescence speegtere recorded on a
Hitachi-F-4500 fluorescence spectrophotometer andor&imax-P luminescence
spectrometer (HORIBA JOBIN YVON INC.). The absolule@orescence quantum

yields and time-resolved luminescence of solids ewaneasured by Edinburgh
Instruments FLS900. Column chromatographic separativere carried out on silica gel
(200-300 mesh). TLC was performed by using comra#lycprepared 100-400 mesh

silica gel plates (GJs4) and visualization was effected at 254 nm.
2.2 Synthesis
2.2.1 Synthesis of luminogens 1d and 2d with formamide units

Synthesis oflc: A mixture of compoundda (3.8 mmol, 2.5 g) 1b (9.6 mmol),
K>CO; (28.8 mmol), Pd(PRy (0.04 mmol) were stirred in THF (50 ml) and@(5 ml)
for two days under an argon atmosphere &t 8After completion of present reaction,
the mixtures were extracted with dichloromethan& 28 mL). The combined organic
layers were washed with brine, dried §8@), and concentrated in vacuo. The residues
were purified by column chromatography, affording expected white solid product in

a yield of 60.0%*H NMR (400 MH;, CDCL): & (ppm)= 7.89-7.79 (m, 8H), 7.72-7.66



(m, 4H), 7.63 (s, 2H), 7.58 (d, J= 8 Hz, 2H), 7(dpJ= 8 Hz, 2H), 7.34 (d, J= 8 Hz, 2H),
4.01 (s, 4H), 3.27 (t, J= 6 Hz, 4H), 2.10 (s, 4HP5 (d, J= 8 Hz, 4H), 1.23 (s, 4H), 1.12
(s, 4H), 0.76 (s, 4H). *C NMR (100 MH;, CDCk): & (ppm)= 151.31, 143.93, 143.42,
141.38, 140.88, 140.38, 140.13, 139.97, 126.80,6824.26.22, 125.99, 125.02, 123.70,
121.30, 120.10, 119.93, 55.19, 40.27, 37.01, 338810, 29.01, 27.70, 23.62. EI-MS:
m/z= 820.63[M]. Anal. Calcd. for GHagBrs: C, 74.63; H, 5.89. Found: C, 74.69; H,

5.85.

Synthesis of 1d: A mixture of compoundslc (1.8 mmol, 1.5 q),
N-(4-hydroxyphenyl)formamide (5.5 mmol),,&0; (21.9 mmol) were stirred in DMF
(50 ml) for overnight under an argon atmospher8C4t. After completion of present
reaction, DMF was removed from reaction system édguum distillation. the residual
mixtures were extracted with dichloromethane<@ mL). The combined organic
layers were washed with brine, dried §88), and concentrated in vacuo. The residues
were purified by column chromatography, affordihg expected yellow solid product
in a yield of 58.0%*H NMR (400 MH,, CDCk): & (ppm)= 8.39 (d, J= 12 Hz, 1H), 8.21
(s, 1H), 7.84-7.65 (m, 13H), 7.56 (d, J= 8 Hz, 2ZH%0-7.24 (m, 8H), 7.12 (d, J= 12 Hz,
1H), 6.86 (d, J= 8 Hz, 2H), 6.71 (d, J= 8 Hz, 4Bip4 (s, 4H), 3.74 (d, J= 4 Hz, 4H),
2.11 (s, 4H), 1.54 (s, 4H), 1.25 (d, J= 4 Hz, 4H)6 (d, J= 4 Hz, 4H), 0.79 (s, 4HjC
NMR (100 MH;, CDCk): 6 (ppm)= 162.64, 158.57, 151.46, 143.98, 143.47,.4241

140.87, 140.28, 129.05, 126.87, 126.17, 126.01,102323.72, 121.65, 121.42, 120.10,



119.97, 115.44, 114.86, 68.21, 55.31, 40.25, 372030, 28.98, 25.49, 23.64. EI-MS:
m/z= 933.71[M]. Anal. Calcd. for GHeN2O4: C, 83.66; H, 6.48; N, 3.00. Found: C,

83.70; H, 6.40; N, 3.02.

Insert Scheme 1

Synthesis of2c: A mixture of 2,7-dibromofluorene (2.6 mmol, 0.85 g3b (6.6
mmol), K;CO; (19.7 mmol), Pd(PRJy (0.03 mmol) were stirred in THF (50 ml) and
H,O (5 ml) for two days under an argon atmospher@Q&t. After completion of
present reaction, the mixtures were extracted dithloromethane (320 mL). The
combined organic layers were washed with brineedd(NaSQO;,), and concentrated in
vacuo. The residues were purified by column chrography, affording the expected
white solid product in a yield of 56.7%H NMR (400 MH;, CDCk): & (ppm)= 7.91 (t,
J= 8 Hz, 4H), 7.80-7.63 (m, 10H), 7.35 (s, 6H),04(&, 2H), 3.28 (t, J= 8 Hz, 8H), 2.04
(s, 8H), 1.67 (t, J= 6 Hz, 8H), 1.21-1.10 (m, 16B1B8 (s, 8H)°C NMR (100 MH;,
CDCl3): 6 (ppm)= 150.99, 150.50, 144.17, 140.74, 140.51,2140140.14, 127.08,
126.90, 126.08, 123.76, 122.73, 121.21, 120.20,741%5.00, 42.24, 37.10, 33.94,
32.58, 29.10, 27.70, 23.51. Anal. Calcd. fapHGBrs: C, 65.98; H, 6.15. Found: C,

65.91; H, 6.23.

Synthesis of 2d: A mixture of compounds2c (1.5 mmol, 1.7 Q),

N-(4-hydroxyphenyl)formamide (8.9 mmol),,&0; (35.6 mmol) were stirred in DMF



(50 ml) for overnight under an argon atmospher804t. After completion of present
reaction, DMF was removed from reaction system édguum distillation. the residual
mixtures were extracted with dichloromethanex@ mL). The combined organic
layers were washed with brine, dried ¢S@)), and concentrated in vacuo. The residues
were purified by column chromatography, affordirige texpected orange red solid
product in a yield of 51.8%H NMR (400 MH,, CDCkL): 5 (ppm)= 8.46-8.26 (m, 3H),
7.86 (d, J= 4 Hz 3H), 7.79-7.60 (m, 12H), 7.37-7.30 (m, 14H), 6.84J= 8 Hz, 4H),
6.79-6.75 (m, 8H), 4.02 (s, 2H), 3.79 (t, J= 6 BEl), 2.05 (d, J= 8 Hz, 8H), 1.57 (s,
8H), 1.26-1.14 (m, 16H), 0.71 (s, 8HJC NMR (100 MH,, CDCL): & (ppm)= 163.10,
159.02, 156.94, 156.04, 151.14, 150.62, 144.17.,684040.30, 140.13, 129.69, 129.21,
127.05, 126.86, 126.01, 123.72, 122.78, 121.63,382120.19, 120.01, 119.75, 115.29,
114.64, 68.09, 68.00, 55.04, 40.26, 29.57, 28.9552 23.64. Anal. Calcd. for

Co1HaaN4Og: C, 79.68; H, 6.91; N, 4.08. Found: C, 79.62; 66N, 4.15.

Insert Scheme 2

2.2.2 Synthesis of luminogens 3d and 4d with fluorenone unit

Synthesis of3d: A mixture of3c (1.9 mmol, 0.5 g) 3b (2.4 mmol), KCO; (14.5
mmol), Pd(PP¥),4 (0.02 mmol) were stirred in THF (50 ml) and@(5 ml) for two days

under an argon atmosphere at(BOAfter completion of present reaction, the mixture



were extracted with dichloromethane>{20 mL). The combined organic layers were
washed with brine, dried (MN&0O,), and concentrated in vacuo. The residues were
purified by column chromatography, affording thepested yellow solid product in a
yield of 61.2%H NMR (400 MH,, CDCL): & (ppm)= 7.99 (s, 1H), 7.80-7.68 (m, 4H),
7.61-7.51 (m, 5H), 7.37-7.29 (m, 4H), 2.02 (t, JHAB 4H), 1.13-1.05 (m, 12H), 0.76 (t,
J= 6 Hz, 6H), 0.65 (d, J= 8 Hz, 4HJC NMR (100 MH, CDCk): § (ppm)= 194.00,
151.54, 150.93, 144.30, 142.89, 142.65, 141.05.484038.44, 134.79, 134.38, 133.14,
128.89, 127.22, 126.78, 125.55, 124.36, 122.85,9120.20.63, 120.32, 120.01, 119.79,
55.19, 40.39, 31.46, 29.66, 23.73, 22.55, 13.98V&1 m/z= 512.53[M]. Anal. Calcd.

for CsgHaoO: C, 89.02; H, 7.86. Found: C, 89.08; H, 7.81.

Synthesis ofid: A mixture of4c (4.6 mmol, 1.56 g) 3b (11.5 mmol), KCOs (34.6
mmol), Pd(PP¥)4 (0.05 mmol) were stirred in THF (50 ml) and@(5 ml) for two days
under an argon atmosphere at(80After completion of present reaction, the mixture
were extracted with dichloromethaneX(20 mL). The combined organic layers were
washed with brine, dried (M&0O,), and concentrated in vacuo. The residues were
purified by column chromatography, affording thepeated yellow solid product in a
yield of 64.0% X NMR (400 MH,, CDCL): & (ppm)= 8.03 (s, 2H), 7.83-7.72 (m, 6H),
7.63-7.60 (m, 6H), 7.38-7.32 (m, 6H), 2.03 (t, JHB 8H), 1.14-0.63 (m, 44H}°C
NMR (100 MH;, CDCk): 6 (ppm)= 194.02, 151.54, 150.90, 142.79, 142.45,0B1

140.41, 138.37, 135.11, 133.22, 127.22, 126.77,552322.88, 122.82, 120.83, 120.68,



120.04, 119.80, 55.17, 40.39, 31.44, 29.65, 237254, 13.97. EI-MS: m/z=

845.24[MJ". Anal. Calcd. for GH7,0: C, 89.52; H, 8.59. Found: C, 89.59; H, 8.55.

Insert Scheme 3

3. Results and discussion

3.1 Ynthesis

The target compoundsl and2d with formamide units were obtained by reacting
N-(4-hydroxyphenyl)formamide with intermediatés and 2c. Luminogensld and 2d
were preparedaccording to the synthetic routes presented in fBekel and 2,
respectively. The target compoundd and 4d, containing a fluorenone unit, were
obtained by reacting intermedia@ with intermediates3c and 4c, respectively.
Luminogens3d and 4d were prepareaccording to the synthetic route presented in

Scheme 3. All compounds were synthesized with pagicentage yields

3.2 Fluorescence change behavior due to aggregate formation

To observe the novel aggregation-induced charatteiof luminogendd and2d,
the luminescence and UV/Vis spectra (Figs. S1 a2dwre recorded in DMF-®
mixtures with differing water fraction contert,). In pure DMF, the luminogeid

absorption spectrum revealed a peak at 352 nm. aissrption blue-shifted at first,



then red-shifted as tHg values were increased. Luminogth exhibited two emission
bands with maximaigay at 375 nm, 460 nm (shoulder peak) and 480 nmeamtted a
deep blue-green fluorescence under UV irradiatios to the existence of three fluorene
units, as is shown in Fig. 1. Interestingly, wiigneached 50%, two new emission bands
were observed withhnax at 401 nm (shoulder peak), 424 nm, 447 nm (shoydak)
and 517 nm, while the luminescence color changesin fiblue-green to faint
yellow-green. Moreover, whefy, exceeded 50%, the addition of water to the DMF
solution resulted in an increase in intensity & tvo new emission bands, producing a
strong yellow-green emission. This is becausgdais insoluble in water, an increase in
the water content in the mixed solvent resultettansformation of the luminogen from
a dissolved or well dispersed state in pure DMBEdgregated particles in the mixtures
with high f,. The two new emission bands were thus caused lyegagtion and
luminogenld exhibited a uncommon AIE phenomenon involving arf@éscence color
changing due to aggregate formation. The changanidsion color was so distinct that
it could be readily distinguished by the naked agder 365 nm UV illumination. The
interesting aggregate behavior of luminodehmight be related to the presence of the

formamide units.

InsertFigure 1
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Luminogen2d has a similar structure ttd, containing two formamide units and
three fluorene units. Luminogéd in pure DMF solution showed a similar absorption
spectrum tald, with the absorption maximum occurring at 352 rhig(S2). However,
in contrast to luminogenid, the absorption peak red-shifted at first, themekshifted
whenf, was increased. As is illustrated in Fig. 2, ingoDMF two emission bands were
observed withhnaxat 376 nm, 457 nm (shoulder peak) and 477 nm, sporaling to
blue-green emission under 365 nm UV light. Wiigneached 40 %, two new emission
bands were observed with.x at 406 nm and 554 nm, and the emission color athng
from blue-green to light yellow. The luminescenoé&nsity of the two new emission
bands significantly increased swas increased to 50 % and the emission became a
stronger yellow. However, the changes to the lusterace spectra with further
increases of water content were negligible. Theegfduminogen2d also exhibits
outstanding fluorescence change behavior due teeggte formation. It was speculated
that the formamide units played a key role in tliweah aggregate characteristics of

luminogensld and2d.

InsertFigure 2

3.3AlEE characteristics

The AIEE properties of luminoger8sl and4d werealsoinvestigated. The UV/Vis
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absorption spectra in different DMF@ mixtures with differingfy, are shown in Figs.
S3 and S4. Both compounds show similar absorppectsa with absorption maxima at
approximately 306 nm and 350 nm. Luminog&dsand4d belong to Donor-Acceptor
(D-A) molecules. Due to an intramolecular chargengfer (ICT) transition from the
electron-donating fluorene units to the electrocepting fluorenone unit, luminog&a

in pure DMF (2.0 x 18 mol L) exhibited very weak yellow fluorescence withaxat
552 nm. The yellow emission disappearf@svas increased to 10% due to twisted
intramolecular charge transfer (TICT). Which comiyaiakes place in D-A molecules,
decreasing the emission efficiency and red-shiftimgemission wavelength. However,
Whenf, exceeded 40%, the emission intensity increasetfisigntly and the emission
maximum of luminoger8d shifted to 536 nm. Furthermore, the fluorescertanged
from weak yellow to strong yellow, which is typicafl AIEE active species (Fig. 3).[26]
Since the dissolution capacity of the mixture witgh water content became quite poor,
the luminoger8d musthave aggregated, and the AIEE phenomenon may beiated

with the presence of fluorenone.

InsertFigure 3

Luminogen4d contains two fluorene units and one fluorenone. wing to the

remarkable ICT character, luminogéd exhibited relatively strong yellow emission in

12



pure THF with amaxat 542 nm. However, the luminescence intensityhef @mission
band largely decreased whignwas increased to 10 %, which is attributed to TE3T
well. Excitingly, the presence of the fluorenoneietyinduced AIEE in luminoge#d.

As shownin Fig. 4, whert,, exceeded 50 %, the luminescence intensity aganeased.
Hence, we can adjust turning on or off this yelltworescence simplyia control of the
water fraction Luminogendd alsoexhibited some AIEE behavior, but it is weaker than

in the case o8b (Fig. 4).

InsertFigure 4

3.4 Thin-film and solid state fluorescence behavior

Thin-film and solid state fluorescence spectra wased to further study the
aggregation characteristics of luminogdus 2d, 3d and4d. As shown in Fig. 5, the
thin-film fluorescence spectra of luminogeld and 2d showed two emission bands at
around 423 nm and 530 nm, with thgx at around 530 nm. The thin-film fluorescence
spectra of luminogerdd and4d showed single emission bands withx at 549 nm and
572 nm, respectively. Consistent with the luminaseeof all luminogens in DMF or
THF-H,O mixtures with high water content, thin-film of nhinogen 1d emitted
yellow-green fluorescence, and thin-films of oth@minogens emitted strong yellow
fluorescence under illumination with a UV lamp (3@3). In addition, their solid state

13



fluorescence spectra were similar to the thin-Blpectra. The quantum yield of solid

was 8.5 %, and the average lifetime was 6.92 ns. uantum yield of soli@d was

6.4 %, which was lower than solidl. The average lifetime was 4.47 ns, which was also
lower than solidld. Time-resolved luminescence of soliti$ and2d are presented in
Figs. S5 and S6. The luminescence quantum yieldobfl 3d was 15.8 %, and the
average lifetime was 5.47 ns. The quantum yieldsafd 4d was 20.7 %, and the
average lifetime was 9.70 ns. Therefore, the ssidle emission quantum yield 4d
was the highest of all studied luminogemke time-resolved luminescence of sol8ds

and4d are shown in Figs. S7 and S8.

InsertFigure 5

4. Conclusions

In this work, we report a series of novel fluoregcenolecules based on fluorene.
Through investigation of their aggregation propstit was discovered that luminogens
1d and 2d, containing formamide units, exhibit obvious fluaresce change due to
aggregate formation, an novel and interesting aggien-induced phenomenon. The
occurrence of aggregate fluorescence change islikelst related to the presence of the
formamide units. Luminoge®d, containing a fluorenone unit, exhibited excell&HEE

characteristics, which is very likely associatedhwthe presence of the fluorenone unit.
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Although luminogen4d demonstrates weaker AIEE behavior thdoh 4d exhibits
superior solid-state emission quantum yieéldditionally, in thin-films and in the solid
state, these luminogens showed intense yellow-goegmllow emission. Future studies
will focus on finding other fluorene-based luminogewith novel AIE or AIEE

characteristics.
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Figure 1. (a) PL spectra of the dilute solutions of luminodel (2.0x10°> mol L™

in DMF-H,O mixtures with different volume fractions of wai{@%, 30% and 50%). (b)
PL spectra of the dilute solutions of luminogéa (2.0x10° mol L) in DMF-H,O
mixtures with different volume fractions of waté&000-90%). Excitation wavelength=
330 nm. (c) The fluorescence images of luminog@rfconcentration: 2.0x10mol L™

in different DMF-HO mixtures with different water fraction$,) taken under 365 nm

UV illumination.
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Figure 2. (a) PL spectra of the dilute solutions of lumino@e (2.0x10°> mol L) in
DMF-H,O mixtures with different volume fractions of wa(@b6, 30% and 40%). (b) PL
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Fluorene-based novel highly emissive fluorescent molecules with

aggregate fluorescence change or aggregation-induced emission

enhancement characteristics

Zhao Chen, Jinhua Liang, Xie Han, Jun Yin*, Guarg¥YA, Sheng Hua Liu*

Synopsis

Fluorene-based luminogens with formamide units leitdd fluorescence change of

aggregate formation, which is a uncommon and naggregation-induced emission

phenomenon. Fluorene-based Iuminogens with fluorenanit exhibited AIEE

characteristics.
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Figure S1. UV-Vis absorption spectra dfd in DMF-water mixtures with different

volume fractions of water (0-90%).

Figure S2. UV-Vis absorption spectra did in DMF-water mixtures with different

volume fractions of water (0-90%).

Figure S3. UV-Vis absorption spectra &d in DMF-water mixtures with different

volume fractions of water (0-90%).
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Figure $4. UV-Vis absorption spectra ofd in THF-water mixtures with different

volume fractions of water (0-90%).

FigureS5. Time-resolved luminescence of solid.

FigureS6. Time-resolved luminescence of sabd.

FigureS7. Time-resolved luminescence of sobd.

FigureS8. Time-resolved luminescence of solid.

FigureS9. Fluorescence decaysphotoluminescence quantum yietb®f solids1d,

2d, 3d and4d.

32



[y
o
1

fvﬁvoI96)
—0
——10
—20
—30
——40
——50
——60
——70

—80
90

300 350 400 450 500
Wavelength (nm)

o o
(o2} oo
1 N 1 N

Absorbance (a.u.)
o
T

o
N
1 N

o
o
1 L

Figure S1. UV-Vis absorption spectra did in DMF-water mixtures with different

volume fractions of water (0-90%).
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Figure S3. UV-Vis absorption spectra dd in DMF-water mixtures with different

volume fractions of water (0-90%).
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Figure S5. Time-resolved luminescence of solldi. Excitation wavelength:

375nm.
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Figure S6. Time-resolved luminescence of solitl. Excitation wavelength:

375nm.
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Figure S7. Time-resolved luminescence of soféd. Excitation wavelength:

375nm.
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Figure S8. Time-resolved luminescence of sodd. Excitation wavelength:

375nm.



FigureS9. Fluorescence decaysphotoluminescence quantum yietb®of solidsld,

2d, 3d and4d.

, <T> b
Solids| t1(nNS) | Ai(%) | T2(NS)| A2(%) | T3(NS) | As(%) (nsy ®" (%)
1d 0.38 42.8 4.61 18.6 15.30 38,5 | 6.92 8.5
2d 2.89 52.1 6.20 47.9 4.47 6.4
3d 4.70 96.1 24.27 3.9 5.47 15.8
4d 7.55 53.4 12.14 | 46.6 9.70 | 20.7

& The lifetime <> was calculated according to the equationr> <=
(At +AT+ASTa)(A1+A+As); A: the fractions;t: lifetimes. P ®: photoluminescence

guantum vyields.
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