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ABSTRACT: Low-valent organonickel radical complexes are common intermediates in cross-coupling reactions and metal-
loenzyme-mediated processes. The electronic structures of N-ligand supported nickel complexes appear to vary depending on the
actor ligands and the coordination number. The reduction products of a series of divalent (pyrox)Ni complexes establish the redox
activity of pyrox in stabilizing electron-rich Ni(II)−alkyl and −aryl complexes by adopting a ligand-centered radical configuration.
The reduced pyrox imparts an enhanced trans-influence. In contrast, such redox activity was not observed in a (pyrox)Ni(I)−
bromide species. The excellent capability of pyrox in stabilizing electron-rich Ni species resonates with its proclivity in promoting the
reductive activation of C(sp3) electrophiles in cross-coupling reactions.

The rapid advancement of nickel-catalyzed cross-coupling
reactions has been accompanied by the evolution of

ligands to promote substrate activation, stabilize reaction
intermediates, tune reaction selectivity, and facilitate bond
formation processes.1−5 σ-Donor ligands, including phosphines
and N-heterocyclic carbenes (NHC), have been frequently
applied to reactions involving two-electron redox pathways
proceeding through Ni(0)/Ni(II) cycles.6 Reactions invoking
radical pathways often employ bidentate and tridentate N-
ligands, such as bis(oxazolinylpyridine) (pybox),7 terpyridine
(terpy),8−10 bipyridine (bpy), and analogues,11 bis-oxazoline
(box),12,13 2,2′-linked bioxazoline (biOx),14,15 and pyridine-
oxazoline (pyrox) ligands.16−20 These ligands are strong σ-
donors21 as well as π-acceptors, leading to high field splitting
and excellent stabilization of open-shell organometallic
intermediates.
Open-shell, low-valent organometallic Ni complexes, ligated

with N-chelating ligands, have been extensively proposed as
key intermediates in cross-coupling reactions as well as
metalloenzyme-mediated biological processes.22,23 Character-
ization of the electronic structures of monovalent Ni
complexes can shed light on the reaction mechanisms and
inform ligand design principles. Seminal organometallic Ni(I)
complexes consist of bulky phosphine24−27 and NHC
ligands.28 The redox activity of the more catalytically relevant
N-donor ligands appears to vary depending on the actor
ligands and the coordination number of the nickel center. A
switch in the location of the unpaired electron between Ni and
the ligand was first observed in (terpy)Ni complexes 1 and 2
(Figure 1).29 A (pybox)Ni(Ph) complex 3 is best described as
a divalent Ni(II) stabilized by a pybox radical anion.30 (Bpy)Ni
analogues 4−7 accommodate various electronic struc-
tures.31−36 The redox activity of α-diimine ligands has been
established in a number of Ni complexes, such as 8.37−39 A
(Phbox)Ni(Br) complex exhibits predominantly metalloradical
character due to the lack of conjugation between the two
oxazoline rings.40
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Figure 1. Low-valent organonickel radical complexes bearing
chelating N-ligands and their electronic structures. The compound
formula and formal oxidation states are shown underneath each
structure, whereas the assigned oxidation states of nickel and the
ligands are labeled in the structures based on spectroscopic
characterizations.
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Pyrox, including the readily available chiral variants, is a
versatile ligand for promoting the reductive Heck reaction17

and asymmetric cross-coupling of C(sp3) partners, in
particular.16,18,19 Compared to pybox, bidentate pyrox may
be more capable of accommodating high-valent species (Figure
1). Among bidentate ligands, the C1 symmetric pyrox poses a
“push−pull” effect by the oxazoline and pyridine moieties that
facilitate oxidative addition as well as reductive elimination.41

Although being implied in a rhenium complex,42 the redox
activity of pyrox ligands has not been characterized in the
context of stabilizing open-shell transition metal complexes.
The prevalence of monovalent (pyrox)Ni intermediates in
catalysis, the versatile electronic structures of N-ligated Ni
radical complexes, and the dearth of knowledge in the redox
activity of pyrox prompted us to investigate the redox activity
of pyrox in stabilizing low-valent nickel-alkyl, aryl, and bromide
complexes.
We selected (S)-tBupyrox as a platform for preparing (pyrox)

Ni model complexes (Scheme 1). Transmetalation of

(tBupyrox)Ni(acac)2 9 (acac = acetylacetonate) with neo-
silylmagnesium chloride generated (tBupyrox)Ni(Ns)2 10 (Ns
= neosilyl) as an olive green crystal. Addition of (DIPP)
magnesium bromide (DIPP = 2,6-diisopropylphenyl) to 9
afforded 12 in 47% yield. (tBupyrox)NiBr2 13 was conveniently
prepared by combining (S)-tBupyrox and NiBr2(DME).
Treating 13 with 2 equiv of (DIPP)lithium gave (tBupyrox)-
Ni(DIPP)2 13 as a teal crystal. Complexes 10, 12 and 14 are
low-spin Ni(II) complexes, evident by their diamagnetic 1H
NMR spectra (Figures S1, S3, and S5) and the square-planar
geometry as determined by single crystal X-ray diffraction
(Figures S23, S25, and S26).
The cyclic voltammetry (CV) study of 10 and 14 reveals

quasi-reversible redox waves corresponding to the redox
couples of Ni(II)/Ni(I) (Figures S9 and S12). The data
suggests modest stability of Ni(I) species, which prompted us
to attempt the chemical reduction of 10 and 14.43 Treating 10

with 1 equiv of potassium graphite (KC8) along with an equal
molarity of 18-crown-6 in THF led to a chartreuse crystalline
complex 11.44 Single crystal X-ray diffraction establishes the
structure of 11 to be [K+(crown)][(tBupyrox)NiNs2]

− (Figure
2A). Performing a similar reduction of 14 led to the formation

of [K+(crown)][(tBupyrox)Ni(DIPP)2]
− 15 as an olive green

complex, insoluble in Et2O (Figure 2B). Our attempts to
reduce 12 under similar conditions resulted in rapid
disproportionation to form 14 and Ni black.
Both anions 11 and 15 adopt a square planar geometry

similar to that of the nautral 10 and 14 (Figure 2). In 11, there
is a secondary bonding interaction between the pyridine and
[K(crown)]+, evident by a close distance between [K-
(crown)]+ and two carbons of the pyridine (3.202(7) and
3.333(7) Å), whereas such interactions are absent in 15. The
bond lengths of the pyrox ligands are indicative of the redox
state of the ligand.45 Comparing complexes 11 with 10, the
Nox−Cox bond distance of 1.311(7) Å in 11 is longer than that
of 10 (1.285(8) Å), the Cox−Cpyr bond distance of 1.393(8) Å
significantly shorter than 1.438(9) Å, and the Cpyr−Npyr bond
distance of 1.402(8) Å substantially longer than 1.360(9) Å
(Table 1). These parameters reveal that the pyrox in 11 is
reduced to [pyrox]•−. The bond lengths of complex 15 follow
a similar trend compared to 12 and 14, displaying elongated
Nox−Cox and Cpyr−Npyr bonds and a shorter Cox−Cpyr bond,
although the difference is less pronounced considering the
error bars.
In 10 and 14, the longer Ni−C(4) relative to Ni−C(3)

reveals a stronger trans-influence of pyridine compared to
oxazoline, giving rise to the “push−pull” effect, consequential
in asymmetric catalysis.41 The elongated Ni−C bonds, Ni−
C(3) and Ni−C(4), in 11 and 15 relative to those of 10 and
14 substantiate an enhanced trans-influence of pyrox in the
reduced form.

Scheme 1. Syntheses of ((S)-tBuPyrox)Ni(II) and Ni(I)
Complexes

Figure 2. X-ray structures of Ni complexes 11 (A) and 15 (B) at 50%
probability thermal ellipsoids. Hydrogen atoms are omitted, and t-Bu
and isopropyl groups are truncated for clarity.
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The EPR spectrum of 11 in a toluene solution at 295 K
displays an isotropic signal with giso = 2.009, along with
hyperfine coupling to two N donors (I = 1) and three H atoms
(I = 1/2) (Figure 3A). At 10 K, the glassy frozen solution of 11

reveals a rhombic signal, which can be simulated by applying
the parameters: gx = 1.999, gy = 2.006, gz = 2.019 (Figure S19).
The average g value of 2.008 and the small anisotropy Δg of
0.020 are comparable to those of [(bpy)Ni(Mes)2]

•−.31 A
similar isotropic EPR signal was recorded for 15 at 295 K
(Figure 3B) and at 10 K (Figure S20). The isotropic EPR
spectra of both 11 and 15 with g values close to 2.003,
combined with the hyperfine coupling to two N atoms and
three H atoms on the ligand, led us to assign the radical density
to the ligand, with small nickel contribution. The reduction of
12 by KC8 resulted in an unstable species, the EPR spectrum

of which is consistent with an organic radical with a g value of
2.005 (Figure S21).
We performed geometry optimizations and single-point

calculations at the B3LYP level, using the ORCA program.46

The computed Mulliken spin density reveals that the unpaired
electron is delocalized to the pyrox ligands in 11 and 15
(Figure 4). The DFT data is corroborated with the X-ray

structural characterization and the EPR spectra of 11 and 15,
establishing low-spin Ni(II) d8 species with a radical in the π*
orbital of pyrox.
Our attempts to reduce 13 resulted in rapid decomposition.

The reduction of the bulky complex 16 by KC8 furnished a
paramagnetic species, assigned to Ni(I) 17 (eq 1). EPR

Table 1. Metrical Parameters of (tBuPyrox)Ni Complexes

complex Nox−Cox (N(1)−C(1) Å) Cox−Cpyr (C(1)−C(2) Å) Cpyr−Npyr (C(2)−N(2) Å) Ni−C(3) (Å) Ni−C(4) (Å)

10 1.285(8) 1.438(9) 1.360(9) 1.925(7) 1.943(8)
11 1.311(7) 1.393(8) 1.402(8) 1.934(6) 1.952(6)
12 1.300(17) 1.441(18) 1.351(16)
14 1.277(6) 1.452(7) 1.360(6) 1.909(5) 1.923(7)
15 1.317(12) 1.423(14) 1.378(12) 1.916(9) 1.940(9)

Figure 3. X-band EPR spectra of 11 (A) and 15 (B) (black).
Temperature = 295 K, solvent = toluene. The simulated spectra (red)
used the following parameters: 11, giso = 2.009, AN,N,H,H,H = [7.0, 8.7,
8.2, 14.1, 22.4] MHz; 15, giso = 2.007, AN,N,H,H,H = [7.6, 7.6, 7.3, 14.5,
21.3] MHz.

Figure 4. Spin density plots for 11 (A) and 15 (B) obtained from
Mulliken population analysis.
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analysis at 10 K gave rhombic signals, simulated with
parameters gx = 2.373, gy = 2.180, and gz = 2.109, indicating
a Ni-centered radical (Figure 5A). This assignment agrees with

the DFT calculations, in which the single point energy
calculation converged to a solution with a spin-density of 0.97
on the nickel center (Figure 5B). The different electronic
structures between 11, 15 and 17 are reminiscent of those
observed in (terpy)Ni29 and (phen)Ni complexes.35 We
attribute the lack of ligand redox activity in 17 to the weaker
electron-donating capability of bromide relative to aryl and
neosilyl groups and the change of coordination number from
four to three.
Nickelate complexes are resilient intermediates in cross-

coupling reactions.47 Ni(I)−aryl species have been proposed
to activate alkyl halides to afford radicals, whereas Ni(I)−
halide complexes preferentially react with aryl halides.36 We
explored the reactivity of 15 with a variety of alkyl and aryl
halides (Table 2). Iodomethane immediately reacted with 15
to afford ethane and 14. This result is consistent with single-
electron activation of MeI by 15, followed by methyl radical
dimerization, while Ni(I) was oxidized to Ni(II). We attribute
the poor mass balance of Ni to the instability of 14 and 15.
The activation of cyclopropylmethyl bromide by 15 gave 18,
raised from the dimerization of the homoallylic radical.
Chlorocyclohexane and para-toluoyl bromide were inert
toward 15.
Ni(I) 17 displayed contrasting selectivity compared to 15.

Subjecting Csp3 electrophiles, including iodomethane, cyclo-
propylmethyl bromide, and chlorocyclohexane, to 17 resulted
in no radical dimerization product (Table 2). On the contrary,
17 reacted with para-toluoyl bromide to afford 4,4′-bitoluene
in 33% yield and Ni(II) 16 in 59% yield.

The preference of C(sp3) over C(sp2) electrophiles by 15
could stem from the high electron-density that facilitates
electron transfer, whereas the large steric hindrance prevents
the approach of Csp2 electrophiles to the Ni center (Scheme
2). Ni(I)−Br complex 17 favors C(sp2) to C(sp3) electro-

philes, because the open geometry allows for oxidative addition
of aryl bromides to the Ni(I) center. The difference in
selectivity of Ni(I)−aryl and Ni(I)−Br species supports our
previous proposal that C(sp2) and C(sp3) electrophiles are
separately activated by Ni(I)−Br and Ni(I)−aryl species,
respectively.36 The sequential mechanism accounts for the
chemoselectivity observed in cross-electrophile coupling
reactions.
In summary, pyrox is redox-active in stabilizing 11 and 15 to

give [pyrox]•− ligated low-spin d8 Ni(II) species. Pyridine is a
better donor than oxazoline. The unsymmetrical trans-
influence between pyridine and oxazoline, enhanced in the
reduced form, is consequential to stereochemical models for
chiral induction. Complex 17, in contrast, is a nickel-centered
radical. The different electronic structures can be attributed to
the electron-donating ability of the X ligands on Ni and the
coordination number. Complexes 15 and 17 exhibit divergent
activity between C(sp2) and C(sp3) electrophiles, which can
account for the chemoselectivity in cross-electrophile coupling

Figure 5. X-band EPR spectrum (A) and spin density plot of 17 (B).
Temperature = 10 K, solvent = toluene. The simulated spectrum
(red) uses the following parameters: 17, gx = 2.373, gy = 2.180, gz =
2.109, ANx = 350 MHz, ANy = 58 MHz, and ANz = 0 MHz.

Table 2. Reactivity of 15 and 17 with Electrophiles to Afford
Radicals

Scheme 2. Selectivity of Ni(I) Complexes in Activating Csp2

and Csp3 Electrophiles
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reactions.36 The stabilization of organonickel radical inter-
mediates by the redox active pyrox contributes to their
proclivity in activating C(sp3) electrophiles to afford radical
intermediates, a reactivity that distinguishes nickel from
palladium in cross-coupling reactions.4
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