Journal of Catalysis 381 (2020) 38-43

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Nickel-catalyzed electrochemical Minisci acylation of aromatic N-heterocycles with α -keto acids via ligand-to-metal electron transfer pathway

Hang Ding, Kun Xu*, Cheng-Chu Zeng*

Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China

ARTICLE INFO

Article history: Received 19 July 2019 Revised 17 October 2019 Accepted 24 October 2019

Keywords: Minisci acylation reactions Nickel-catalysis α-Keto acid Electrosynthesis

ABSTRACT

A nickel-catalyzed electrochemical methodology for the Minisci acylation of aromatic electron-deficient heterocycles with α -keto acids has been developed. The reaction is performed in an undivided cell under constant current conditions, featuring broad scope of substrates and avoiding the conventional utilization of silver-based catalysts in conjunction with excess amount of oxidants. Cyclic voltammetric analysis disclosed that a ligand-to-metal electron transfer process may be involved in the generation of the key acyl radicals.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Minisci reaction refers to a radical substitution process in which a nucleophilic carbon-centered radical reacts with an electrondeficient aromatic heterocycle to assemble a new carbon-carbon bond, thereby providing a complementary avenue to the functionalization of electron-rich aromatics via classical electrophilic Friedel-Crafts reactions [1]. Minisci-type radical reactions are especially useful for the late-stage functionalization of C—H bonds, thus have attracted great attention in pharmaceutical, medicinal chemistry and material sciences [2,3]. To this end, undisputable advances have been made in Minisci alkylation reactions, however, the Minisci acylation reactions are less studied.

Decarboxylative cross-coupling of α -keto acids with heteroaromatics has proven to be one of the powerful and versatile approaches to the Minisci acylation reactions. In 1991, Fontana and co-workers reported for the first time the Ag(I)-catalyzed oxidative decarboxylation of α -keto acids with quinolone, pyrazine, quinoxaline and 4-substituted pyridines, using a combination of AgNO₃/(NH₄)₂S₂O₈ to prepare the corresponding mono- and diacyl derivatives [4]. Oh and co-workers have also reported the direct acylation of 2H-indazoles with α -keto acid derivatives [5]. In 2014, the selective C2-monoacylation of pyridine-N-oxides was accomplished by Muthusubramanian et al. using Ag₂CO₃ /K₂S₂O₈ as the using $Ag_3PO_4/K_2S_2O_8$ system [7]. In order to replace the expensive sliver-based catalysts, we reported the Fe(II)-catalyzed decarboxylative acylation of N-heteroarenes (Scheme 1a) [8]. In addition, visible light-mediated decarboxylative coupling of α -keto acids with N-heterocycles has also emerged as a versatile approach to the Minisci acylation reactions (Scheme 1b). For example, Zhang and co-workers reported the acylation of N-heterocycles under visible-light irradiation [9]. Later on, Wencel-Delord and coworkers reported a visible-light-induced acylation of Nheterocycles with α -keto acids in the presence of $K_2S_2O_8$ as the oxidizing reagent [10]. Recently, Prabhu et al. employed Ir(I) complex as the photocatalyst to synthesize acylated pyridine derivatives [11]. In a word, for the decarboxylative cross-coupling of α -keto acids with N-heteroarenes, expensive Ag(I)-based catalysts or Ir (I)-based photocatalysts in conjunction with excess amount of oxidant were generally employed, which is not practical. Therefore, the development of new approaches using cheap metal catalyst, specially under external oxidant-free conditions, are highly desired. Organic electrosynthesis has emerged as a green and environ-

catalyst and oxidizing reagent [6]. Recently, Wu, Zhao and coworkers have achieved the decarboxylative coupling of pyrazines

Organic electrosynthesis has emerged as a green and environmentally friendly way to achieve C—H bonds functionalization, and it is revolutionizing the way of organic synthesis [12]. In this context, we have been working on the electrochemical construction of new C—C bonds and C-heteroatom bonds via indirect anodic oxidation using redox mediators, such as halide ions, TEMPO, DDQ

JOURNAL OF CATALYSIS

^{*} Corresponding authors. *E-mail addresses:* kunxu@bjut.edu.cn (K. Xu), zengcc@bjut.edu.cn (C.-C. Zeng).

a) Minisci acylation under conventional chemical oxidation

b) Photoredox-based Minisci acylation reaction

c) Our previous NH₄I mediated electrochemical Minisci acylation reaction

d) This work: Nickel catalyzed electrochemical Minisci acylation reaction

Scheme 1. Decarboxylative Minisci-type Acylation reactions of α -keto acids with *N*-heteroarenes.

Table 1Optimization of Reaction Condition a.

N + Catalyst solvent, anode/cathode					
1a	2a				
Entry	Catalyst (mol%)	Solvent	Electrolyte	T (°C)	Yield ^b (%)
1	Ni(acac) ₂ (10)	CH ₃ CN	Bu ₄ NBF ₄	20	15
2	Ni(acac) ₂ (10)	DCM	Bu ₄ NBF ₄	20	20
3	Ni(acac) ₂ (10)	DMSO	Bu ₄ NBF ₄	20	0
4	Ni(acac) ₂ (10)	MeOH	Bu ₄ NBF ₄	20	0
5	Ni(acac) ₂ (10)	EtOH	Bu ₄ NBF ₄	20	0
6	Ni(acac) ₂ (10)	DCE	Bu ₄ NBF ₄	20	16
7	Ni(acac) ₂ (10)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	20	27
8	Ni(acac) ₂ (10)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	58
9	$Ni_2SO_4(10)$	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	5
10	NiCl ₂ (10)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	7
11	$Ni(cod)_2(10)$	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	17
12	NiCl ₂ .glym(10)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	20
13	Ni(acac) ₂ (0)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	8
14	Ni(acac) ₂ (5)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	12
15	Ni(acac) ₂ (30)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	45
16 ^c	Ni(acac) ₂ (10)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	13
17 ^d	Ni(acac) ₂ (10)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	46
18	Ni(acac) ₂ (10)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NPF ₆	50	44
19	Ni(acac) ₂ (10)	CH ₃ CN:DCM (v:v 3:7)	Et ₄ NBF ₄	50	37
20 ^e	Ni(acac) ₂ (10)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	36
21 ^f	Ni(acac) ₂ (10)	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	5
22 ^g	$Ni(acac)_2(10)$	CH ₃ CN:DCM (v:v 3:7)	Bu ₄ NBF ₄	50	0

^a Reaction conditions: **1a** (1.0 mmol), **2a** (3.0 mmol), 0.1 M supporting electrolyte in 10 mL solvent, undivided cell, current density of 5 mA cm⁻², Pt net anode and graphite plate cathode (working area: 3 cm²).

^b Isolated yields.

^c Current density of 3 mA cm⁻².

 $^{\rm d}\,$ Current density of 10 mA cm $^{-2}.$

^e Graphite plate anode and graphite plate cathode (working area: 3 cm²).

^f Graphite plate anode and Pt net cathode (working area: 3 cm²).

g No electrolysis.

^a Reaction conditions: platinum net anode and graphite plate cathode (working area: 3 cm^2 , $J = 5 \text{ mA/cm}^2$), **1** (1.0 mmol), **2a** (3.0 mmol)), Bu₄NBF₄ (0.1 M), solvent (7 mL DCM and 3 mL CH₃CN), Ni(acac)₂ (0.1 mmol) was added, 50 °C, undivided cell, 4.0 h.

^b Isolated yield.

and triarylimidazole [13]. For example, we have recently achieved the NH₄I-mediated Minisci acylation reaction of aromatic *N*heterocycles with α -keto acids (Scheme 1c) [14]. Herein, we reported for the first time a Ni(II)-catalyzed electrochemical Minisci acylation reaction of electron-deficient *N*-heteroarenes with α -keto acids (Scheme 1d). The chemistry is performed in an undivided cell under galvanostatic conditions, avoiding the utilization of Ag(I)-based catalyst and excess chemical oxidants. Distinct from conventional Ni-catalyzed decarboxylative cross-coupling reactions wherein Ni-catalysts work as a radical capturer [15], this Ni-catalyzed electrochemical Minisci acylation may involve a ligand-to-metal electron transfer process to generate the key acyl radicals.

2. Results and discussion

We commenced our studies by choosing quinoxaline (**1a**) and phenylglyoxylic acid (**2a**) as the model substrates to optimize the reaction conditions. As shown in Table 1, when constant current electrolysis (CCE) of **1a** and **2a** was performed in an undivided cell with a platinum net as the anode and a graphite plate as the cathode at a constant current of 5 mA cm⁻² with Ni(acac)₂ (10 mol%) as the catalyst and CH₃CN as the solvent at room temperature, the desired product **3aa** was isolated in 15% yield (entry 1). Encouraged by this result, solvent screening was then performed and it was observed that the yield of 3aa increased to 27% when a mixture of CH_3CN and DCM (v:v = 3:7) was used as the solvent (entries 2–7). When the reaction was carried out at 50 °C, the yield of 3aa improved to 58% (entry 8). Further catalyst screening disclosed that Ni₂SO₄, NiCl₂, Ni(cod)₂ and NiCl₂glym were not suitable for the acylation reaction (entries 9-12). In addition, decreasing the loading of catalyst Ni(acac)₂ to 5 mol% or increasing to 30 mol% resulted in inferior results (entries 14 and 15). Besides, it was observed that **3aa** was afforded in 13% or 46% yields when the CCE was carried out at 3 mA/cm² or 10 mA/cm² (entries 16 and 17). Further screening of the supporting electrolytes indicated that Bu₄NBF₄ was superior since **3aa** was obtained in lower yield when *n*-Bu₄NPF₆ or Et₄NBF₄ were employed as the supporting electrolytes (entries 18 and 19). Finally, we turned our attention to the evaluation of electrode materials. When a graphite plate, instead of a Pt net, was used as the anode, **3aa** was obtained in 36% yield (entry 20). Conversely, only 5% yield of 3aa was afforded when Pt net was used as the cathode and graphite plate as the anode. Notably, 3aa was afforded in only 8% yield or less when the reaction was performed in the absence of the catalyst Ni(acac)₂ (entry 13) and electricity (entry 22), which indicates that $Ni(acac)_2$ and electricity played an essential role for the Minisci acylation reaction. At this stage of our investigation, we concluded that the optimal conditions call for using 10 mol% of Ni(acac)₂ as the redox

Table 3Substrate Scope with N-Heteroarene a,b.

^a Reaction conditions: platinum net anode and graphite plate cathode (working area: 3 cm^2 , $J = 5 \text{ mA/cm}^2$), **1** (1.0 mmol), **2a** (3.0 mmol), Bu₄NBF₄ (1 mmol), solvent (DCM 7 mL and CH₃CN 3 mL), Ni(acac)₂ (0.1 mmol), 50 °C, undivided cell, 4.0 h.

^b Isolated yield. ^c 16 h. ^d 20 h.

Scheme 2. Control experiments.

catalyst and Bu_4NBF_4 in the mixed solution of CH_3CN with DCM as the supporting electrolyte. The reaction prefers performing in an undivided cell equipped with Pt net anode and graphite plate cathode at 5 mA/cm² current density (see Table 1, entry 8).

With the optimal reaction conditions in hand, we then studied the scope and the generality of the protocol by examining reactions of quinoxaline **1a** with a variety of α -keto acids **2**. As shown in **Table 2**, it was observed that the aliphatic α -keto acids proceeded smoothly with **1a** under the standard conditions to give the corresponding Minisci acylation products. For example, when aliphatic α -keto acids **2b**, **2c** and **2d** were subjected to react with **1a**, the corresponding **3ab**, **3ac** and **3ad** were afforded in 45%, 36% and 30% yields, respectively. Moderate to good yields of Minisci acylated products were obtained in the cases of aromatic α -keto acids. It seems that the electron-withdrawing groups, such as F, Cl, Br and CF₃, gave higher yields than that of electron-donating groups MeO and Me, when these groups were appended at the *para*position of the benzene ring. For example, CF₃-substituted **3ah** was obtained in 71% yield, whereas methyl-substituted **3aj** was

Fig. 1. Cyclic voltammograms of related compounds in 0.1 M LiClO₄/CH₃CN using glass carbon working electrode, Pt wire, and Ag/AgNO₃ (0.1 M in CH₃CN) as counter and reference electrode at 100 mV/s scan rate: (a) background, (b) Quinoxaline (5.0 mmol/L), (c) PhCOCOOH (5.0 mmol/L), (d) Ni(acac)₂ (2.0 mmol/L), (e) Ni(acac)₂ (2.0 mmol/L) and Quinoxaline (5.0 mmol/L), (f) Ni(acac)₂ (2.0 mmol/L) and PhCOCOOH (5.0 mmol/L).

delivered in 37% yield. In addition, it was observed that lower yields of products were obtained when the substituted group was located at the *ortho*- or *meta*- positions. For example, **3ak** and **3al** were afforded in 55% and 32% yields, respectively, whereas the analogous **3ae** was obtained in 75% yield.

Scheme 3. A proposed mechanism for the nickel-catalyzed electrochemical Minisci acylation.

To further explore the potential of the protocol, the reactions of phenylglyoxylic acid **2a** with a variety of quinoxalines **1** were also investigated, and the results are summarized in Table 3. It was observed that most of the guinoxalines tolerated the reaction conditions. Notably, for non-symmetric quinoxalines (1b-1d), there are two α -C-Hs to the nitrogen atom, therefore a mixture of regioisomers was afforded. In the cases of disubstituted substrates, 1f-1h, the desired products 3fa-3ha were isolated in 20%-70% yields. Other aromatic heterocycles were also tested. As shown in Table 3, when acridine, 1i, was used as the substrate, the corresponding 3ia was afforded in a 40% yield. Unexpectedly, when phenanthridine 1j was used as a substrate to react with 2a under the standard conditions, direct addition product 4ja was generated and isolated in 35% yield, without further conversion to 3ja. In addition, the cross-coupling reactions of isoquinoline (1k) and benzothiazole (11) with 2a did not take place, instead, benzil from the homocoupling of benzoyl radical was isolated in 32% and 15% yields, respectively.

To understand the mechanism for the nickel-catalyzed electrochemical Minisci acylation reaction of *N*-heteroarenes, control experiments were performed. As shown in Scheme 2, when **2a** itself was subjected to electrolysis under the standard conditions, benzil was isolated in 37% yield, whereas, only 9% yield of benzil was afforded in the absence of Ni(acac)₂. In addition, the formation of benzil was observed in the reaction of **1k** and **1l** with **2a** (Table 3). These results indicate that acyl radical is the key intermediate and Ni(acac)₂ is able to promote its formation via decarboxylation of phenylglyoxylic acid.

Cyclic voltammetric analysis was also performed to understand the mechanism. As shown in Fig. 1, the starting substrates, quinoxaline **1a** (curve b) and phenylglyoxylic acid **2a** (curve c), are not oxidized up to 2.0 V, whereas Ni(acac)₂ exhibits an oxidation peak at 1.46 V (vs. Ag/AgNO₃ in 0.1 M CH₃CN) (curve d). These results disclose that Ni(acac)₂ is easier to be oxidized than **1a** and **2a**. It is worth noting that the oxidation peak potential of Ni(acac)₂ shifted negatively by 0.19 V in the presence of 2a (curve f), whereas a slight shift was observed in the presence of 1a (curve e). These results indicate that complexation between $Ni(acac)_2$ and 2a may occur to form a 2a-bound complex which rendered easier the oxidation of Ni(II) to Ni(III) [16]. To further demonstrate the interaction between $Ni(acac)_2$ and **2a**, the decarboxylative coupling of 1a with 2a was electrolyzed at the controlled potential of 1.3 V, and the corresponding product **3aa** was obtained in 42% vield.

Based on these control experiments and cyclic voltammetric examination, a possible mechanism for the nickel-catalyzed electrochemical Minisci acylation reaction is proposed. As shown in Scheme 3, the anodic oxidation of Ni(acac)₂ in the presence of α -keto carboxylic acid generates complex **5**, which undergoes ligand-to-metal electron transfer giving radical **6**, along with the

regeneration of Ni(acac)₂. The radical **6** is very unstable, followed by loss of CO_2 to give acyl radical **7**, which then undergoes radical addition with protonated *N*-heteroarenes to afford adduct **8**. After further oxidation and deprotonation, the Minisci acylated products **3** are finally afforded. Simultaneously, the cathodic reduction of proton offers hydrogen.

3. Conclusion

In summary, we have developed an efficient Ni-catalyzed electrochemical Minisci acylation reaction via decarboxylative crosscoupling of *N*-heteroarenes with α -keto acids. The protocol proceeded in an undivided cell under constant current conditions, thereby avoiding the utilization of a combination of silver-based catalysts with oxidants. Control experiments and cyclic voltammetric analysis disclosed that a ligand-to-metal electron transfer process may be involved in the generation of the key acyl radicals.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 21871019) and National Key Technology R&D Program (2017YFB0307502).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcat.2019.10.030.

References

- For reviews on Minisci reactions, see (a) S. J. P. Rupert, J. P. Robert, Angew. Chem. Int. Ed. 10.1002/anie.201900977; (b) J.Tauber; D. Imbir, T. Opatz, Molecules. 19 (2014) 16190-16222; (c) F. Minisci, A. Citterio, C. Giordano, Accounts Chem. Res. 16 (1983) 27-32; (d) M. Tojino, N. Otsuka, T. Fukuyama, H. Matsubara, I. Ryu, J. Am. Chem. Soc. 128 (2006) 7712-7713; e) C. H. Schiesser, U. Wille, H. Matsubara, I. Ryu, Accounts Chem. Res. 40 (2007) 303-313; (f) L. N. Guo, H. Wang, X. H. Duan, Org. Biomol. Chem. 14 (2016) 7380-7391; (g) F. Penteado, E. F. Lopes, D. Alves, G. Perin, R. G. Jacob, E. J. Lenardão, Chem. Rev. 119 (2019) 7113-7278.
- [2] M.A.J. Duncton, Med. Chem. Commun. 2 (2011) 1135–1161.
- [3] (a) K.H.C. Baser, J. Nat. Prod. 45 (1982) 704–706;
- (b) S. Al-Khalil, P.L. Schiff, J. Nat. Prod. 48 (1985) 989–991.
 [4] F. Fontana, F. Minisci, M.C.N. Barbosa, E. Vismara, J. Org. Chem. 56 (1991) 2866–3286.
- [5] G. Bogonda, H.Y. Kim, K. Oh, Org. Lett. 20 (2018) 2711–2715.
- [6] R. Suresh, R.S. Kumaran, V. Senthilkumar, S. Muthusubramanian, RSC Adv. 4 (2014) 31685–31688.

- [7] Y. Li, M. Lai, Z.Y. Wu, M.Q. Zhao, M.Y. Zhang, ChemistrySelect 3 (2018) 5588– 5592.
- [8] X.Z. Wang, C.C. Zeng, Tetrahedron 75 (2019) 1425–1430.
- [9] X.Y. Zhang, W.Z. Weng, H. Yang, H. Liang, B. Zhang, Org. Lett. 20 (2018) 4686–4690.
- [10] L. Guillemard, F. Colobert, J. Wencel-Delord, Adv. Synth. Catal. 360 (2018) 4184-4190.
- [11] S. Manna, K.R. Prabhu, J. Org. Chem. 84 (2019) 5067–5077.
- [12] (a) R. Francke, R.D. Little, Chem. Soc. Rev. 43 (2014) 2492–2521;
 (b) Y.Y. Jiang, K. Xu, C.C. Zeng, Chem. Rev. 118 (2018) 4485–4540;
 (c) A. Shrestha, M. Lee, A.L. Dunn, M.S. Sanford, Org. Lett. 20 (2018) 204–207;
 (d) N. Sauermann, T.H. Meyer, C. Tian, L. Ackermann, J. Am. Chem. Soc. 139 (2017) 18452–18455.
- [13] (a) Y.Y. Jiang, G.Y. Dou, K. Xu, C.C. Zeng, Org. Chem. Front. 5 (2018) 2573– 2577;

(b) C. Li, C.C. Zeng, L.M. Hu, F.L. Yang, S.J. Yoo, R.D. Little, Electrochim. Acta 14

(2013) 560-566;

(c) L.S. Kang, H.L. Xiao, C.C. Zeng, L.M. Hu, R.D. Little, J. Electroanal. Chem. 767 (2016) 13–17;

- (d) C.C. Zeng, N.T. Zhang, C.M. Lam, R.D. Little, Org. Lett. 145 (2012) 1314–1317.
- [14] Q.Q. Wang, K. Xu, Y.Y. Jiang, Y.G. Liu, B.G. Sun, C.C. Zeng, Org. Lett. 19 (2017) 5517–5520.
- [15] (a) Z.J. Wan, J.Y. Wang, J. Luo, Tetrahedron Lett. 60 (2019) 613–616;
 (b) A.P. Honeycutt, J.M. Hoover, ACS Catal. 7 (2017) 4597–4601;
 (c) N.A. Till, R.T. Smith, D.W.C. MacMillan, J. Am. Chem. Soc. 140 (2018) 5701–5705;
 (d) K. Yang, C. Zhang, P. Wang, Y. Zhang, H. Ge, Chem. Eur. J. 20 (2014) 7241–
- 7244. [16] K.Y. Ye, G. Pombar, N. Fu, G.S. Sauer, I. Keresztes, S. Lin, J. Am. Chem. Soc. 140 (2018) 2438–2441.