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Abstract: New catalytic asymmetric Mukaiyama-type aldol reac-
tion using trimethoxysilyl enol ethers was achieved using p-Tol-BI-
NAP·AgF complex as a catalyst. High syn- and enantioselectivities
were obtained both from the E- and Z-silyl enol ethers.
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The Mukaiyama aldol reaction is a favorite method for the
synthesis of b-hydroxy carbonyl compounds.1 Although a
variety of chiral Lewis acid catalysts have been developed
for the asymmetric reaction of trialkylsilyl enol ethers or
ketene trialkylsilyl acetals with carbonyl compounds,1,2

most of those used are main-group metal (B, Zn, Sn, etc.)
compounds or first row-transition metal (Ti, Cu, etc.)
compounds, and the use of second or third row-transition
metal compounds such as silver catalysts has received lit-
tle attention.3,4 In a previous paper,5 we showed a new cat-
alytic asymmetric Sakurai-Hosomi allylation reaction
using the p-Tol-BINAP·AgF complex. We describe here
a new example of catalytic asymmetric aldol condensa-
tion using trimethoxysilyl enol ethers and p-Tol-BI-
NAP·AgF complex (eq 1).6

Equation 1

Using various BINAP derivatives, we studied the enanti-
oselectivity of this process; yields, syn/anti ratios, and
enantiomeric excesses of the products obtained by the re-
action of cyclohexanone-derived trimethoxysilyl enol
ether with benzaldehyde under the influence of 10 mol%
of various BINAP derivative-AgF complexes in MeOH
which are shown in Table 1. Among the BINAP deriva-
tives examined, (R)-p-Tol-BINAP7 was found to provide
the most satisfactory result (entry 3). Use of (R)-p-
tBuC6H4-BINAP7 resulted in a higher yield with slightly
better ee, although the syn/anti ratio decreased (entry 5). 

Table 1 Asymmetric Aldol Reaction of Cyclohexanone-Derived
Trimethoxysilyl Enol Ether with Benzaldehyde Catalyzed by Various
BINAP·AgF Complexesa

a Unless otherwise noted, the reaction was carried out using chiral
phosphine·AgF complex (10 mol%), cyclohexanone-derived trime-
thoxysilyl enol ether (1 equiv), and benzaldehyde (1 equiv) in MeOH.
b Isolated yield. c Determined by 1H NMR analysis. d The value corre-
sponds to the major diastereomer. Determined by HPLC analysis
(Chiralcel OD-H, Daicel Chemical Industries, Ltd.). e 5 mol% of the
catalyst was used.

The mechanism of the present catalytic reaction has not
been fully elucidated; however, the BINAP·AgF complex
is thought to behave as a chiral Lewis acid catalyst rather
than a silver enolate based on the following NMR results.
When trimethoxysilyl enol ether of cyclohexanone was
treated with an equimolar mixture of (R)-BINAP·AgF
complex and DMF in CD3OD at room temperature, peaks
of the silyl enol ether disappeared and a set of new peaks
ascribable to the 1-cyclohexenyl group appeared, while
peaks of (MeO)3SiF and cyclohexanone were not ob-
served at all. These observations are a positive proof that
none of the silver enolate was generated. Furthermore, we
found  that  when  an  (R)-BINAP was added to an
equimolar amount of AgF in CD3OD at room tempera-
ture, a considerable amount of 2:1 complex [FAB- and
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ESI-MS: m/z 1353 (M+ - F)] was formed accompanied by
a 1:1 complex (eq 2). The 2:1 complex was found to have
no reactivity in the present aldol reaction. The formation
of the undesired 2:1 complex, however, can be suppressed
to some extent by introducing a bulky substituent at the
para-position of the phenyl groups of BINAP. Indeed,
(R)-p-Tol-BINAP and (R)-p-tBuC6H4-BINAP provided
higher chemical yields than did (R)-BINAP (compare en-
tries 1, 3, and 5 in Table 1). 

Equation 2

Table 2 summarizes the results obtained for the reaction
of (E)- and (Z)-silyl enol ethers with various aldehydes
under the influence of 10 mol% of (R)-p-Tol-BINAP·AgF
in MeOH. All the reaction of cyclohexanone-derived (E)-
trimethoxysilyl enol ether resulted in remarkable syn- and
enantioselectivities with aromatic aldehydes (entries 1-
6).8 We found that a 0.6:1 mixture of (R)-p-Tol-BINAP
and AgF gave the desired 1:1 complex without formation
of the unreactive 2:1 complex, and thus, when the amount
of (R)-p-Tol-BINAP was reduced to 3 mol%, the aldol
product was still formed in high yield without any loss of
optical purity even at -40 °C (entries 2 and 3). However,
use of less than 2 mol% of the catalyst resulted in a lower
yield and ee (entry 4). In contrast, tert-butyl ethyl ketone-
derived (Z)-silyl enol ether gave the syn product almost
exclusively with high enantioselectivity up to 97% ee in
combination not only with aromatic aldehydes but also
with a,b-unsaturated aldehyde (entries 7-11). In the reac-
tion with cinnamaldehyde, only a 1,2-adduct was ob-
served (entry 11).

From the aforementioned NMR results and the facts that
AgF obviously activated trimethoxysilyl enol ethers9 and

that trimethoxysilyl enol ethers reacted with aldehydes,
syn-selectively irrespective of the E/Z stereochemistry in
the presence of BINAP·AgF catalyst, the cyclic transition-
state structures A and B shown in Figure can be postulated
as models for the aldol reaction. In these models, the BI-
NAP·AgF complex coordinates as a chiral Lewis acid to
both an aldehyde and a silyl enol ether to form a six-mem-
bered  cyclic  structure,  which  is further stabilized by  the
adjacent  four-membered  ring  formed  by AgF and tri-
methoxysiloxy group.10 Thus, from the E-enol ether, the
syn-aldol adduct can be selectively obtained via a boat-
like transition-state structure A, whereas model B pos-
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Table 2 Diastereo- and Enantioselective Aldol Reaction of Trime-
thoxysilyl Enol Ethers with Aldehydes Catalyzed by (R)-p-Tol-BI-
NAP·AgF Complexa

a Unless otherwise specified, the reaction was carried out using (R)-
p-Tol-BINAP·AgF (10 mol%), trimethoxylsilyl enol ether (1 equiv),
and aldehyde (1 equiv) in MeOH at -78 °C for 4 h. b Isolated yield. c

Determined by 1H NMR analysis. d The value corresponds to the ma-
jor diastereomer. Determined by HPLC analysis (Chiralcel OB-H or
OD-H, Daicel Chemical Industries, Ltd.). e The reaction was perfor-
med using 3 mol% of (R)-p-Tol-BINAP and 5 mol% of AgF. f The
reaction was performed at -78 °C for 4 h, then at -40 °C for 4 h. g The
reaction was performed using 1.2 mol% of (R)-p-Tol-BINAP and
2 mol% of AgF. h The reaction was performed at -78 °C for 2 h, then
at -40 °C for 2 h, and finally at -20 °C for 2 h. i Determined by 1H
NMR analysis of the MTPA ester of the product.
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Figure 1 Probable Cyclic Transition-state Structures
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sessing a chair conformation connects the Z-enol ether to
the syn product. These models are different from those
proposed for asymmetric allylation by allylic
trimethoxysilanes5 which are anticipated to proceed via
six-membered cyclic transition-state structures including
a BINAP-coordinated allylic silver. The difference in
structure is probably due to whether or not the transmetal-
lation to allylic silvers or silver enolates occurs prior to
condensation with aldehydes. 

In summary, we have demonstrated a novel example of
asymmetric Mukaiyama aldol reaction with trimethoxysi-
lyl enol ethers catalyzed by the p-Tol-BINAP·AgF com-
plex. We previously showed that BINAP·AgOTf complex
is a good catalyst for the asymmetric aldol reaction of tri-
alkyltin enolates,11 however, the reaction has the disad-
vantage of requiring the use of toxic trialkyltin
compounds, and silyl enol ethers do not react with alde-
hydes in the presence of this chiral silver(I) catalyst. Main
features of our new process are: (1) the procedure can be
performed without any difficulty employing readily avail-
able chemicals and can provide various optically active
b-hydroxy ketones with high enantioselectivity up to 97%
ee; (2) remarkable syn selectivity is observed for the reac-
tion independent of the E/Z stereochemistry of the silyl
enol ethers; (3) this process is less damaging to the envi-
ronment since less toxic trimethoxysilyl enol ether and
MeOH are used as a reagent and solvent, respectively.
Further work is now in progress on the catalytic aldol re-
action and the detailed reaction mechanism.

A representative experimental procedure is given by the
reaction of trimethoxysilyl enol ether of cyclohexanone
with benzaldehyde catalyzed by (R)-p-Tol-BINAP·AgF
complex (entry 3 in Table 1 and entry 1 in Table 2). A
mixture of AgF (13.0 mg, 0.102 mmol) and (R)-p-Tol-BI-
NAP (67.9 mg, 0.100 mmol) was dissolved in dry MeOH
(6 mL) under argon atmosphere and with direct light ex-
cluded, and stirred at 20 °C for 10 min. To the resulting
solution were added dropwise benzaldehyde (100 µL,
0.98 mmol) and (1-cyclohexenyloxy)trimethoxysilane
(220.4 mg, 1.01 mmol)12 successively at -78 °C. After be-
ing stirred for 4 h at this temperature, the mixture was
treated with brine (2 mL) and solid KF (ca. 1 g) at ambient
temperature for 30 min. The resulting precipitate was fil-
tered off by a glass filter funnel filled with Celite® and sil-
ica gel. The filtrate was dried over Na2SO4 and
concentrated in vacuo after filtration. The residual crude
product was purified by column chromatography on silica
gel (1:5 ethyl acetate/hexane as the eluant) to afford a
mixture of aldol adducts (156.5 mg, 78% yield) as white
solids. The syn/anti ratio was determined to be 84/16 by
1H NMR analysis. The enantioselectivities of the syn and
anti isomers were determined to be 87% ee and 48% ee,
respectively, by HPLC analysis using a chiral column
(Chiralcel OD-H, Daicel Chemical Industries, Ltd., hex-
ane/i-PrOH = 9/1, flow rate = 0.5 mL/min): tsyn-minor

= 13.4 min, tsyn-major = 14.5 min, tanti-major = 16.1 min
(2S,1’R), tanti-minor = 22.2 min (2R,1’S). The absolute con-
figurations of the syn isomers are not known. Spectral data

of the syn isomer (87% ee): [a]25
D = +109.5 (c = 1.0,

CHCl3); elemental analysis calcd for C13H16O2: C 76.44,
H 7.90; found: C 76.10, H 8.23. Other physical and spec-
tral data (TLC, IR, 1H NMR, and 13C NMR) were identical
with those in the literature.11b,14
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