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Abstract: Two stereoselective processes for the synthesis of novel 3,6-disubstituted penam sulfone derivatives 

were developed. One 613-(1-hydroxyethyl) and four 61]-hydroxymethyl penam sulfone derivatives were 

synthesized. All four 6l]-(hydroxymethyl)penam sulfone derivatives demonstrated good IC50 against both TEM- 

1 and AmpC 1]-lactamases. Of these, 61]-hydroxymethyl penam sulfone derivative 25 was the most active 

inhibitor which was able to restore the activity of piperacillin in vitro and in vivo against both TEM-1 and 

AmpC 13-1actamases producing organisms. © 1999 Elsevier Science Ltd. All fights reserved. 

Introduction 

Penicillins and cephalosporins are the most frequently and widely used 13-1actam antibiotics in the clinic. 

However, the development of bacterial resistance to these 1]-lactam antibiotics has had a damaging effect on 

maintaining the effective treatment of bacterial infections. ~ The most significant known mechanism related to 

the development of bacterial resistance to the l~-lactam antibiotic is the production of class A and class C serine 

1]-lactamases. These 1]-lactamases degrade the 13-1actam antibiotics, resulting in a loss of antibacterial activity. 

class A I~-lactamases have molecular weights of about 29 kDa and preferentially hydrolyze penicillins whereas 

class C [3-1actamases have larger molecular weights of about 39 kDa and have a substrate profile favoring 

cephalosporin hydrolysis. 2 Bacterial resistance to these antibiotics could be greatly reduced by administering 

the 13-1actam antibiotic in combination with a compound which inhibits these enzymes. 

Three 1]-lactamase inhibitors in the market are clavulanic acid, sulbactam and tazobactam. They are all 

effective against class A 1]-lactamases, but  have little or no activity against class C 1]-lactamases. Clavulanic 

acid is used in combination with amoxicillin and ticarcillin; similarly, sulbactam with ampicillin and tazobactam 

with piperacillin. Since bacteria producing class C 13-1actamases are increasing in prevalence among infectious 

organisms in nosocomial infections, 3 there is a need to develop an inhibitor which can inhibit the activity of 

both class A and class C 13-1actamases. As tazobactam has some activity against class C [3-1actamases and its 

starting material, 6-aminopenicillanic acid, is readily available, we decided to use tazobactam as the lead for 

structural modifications. So far, the modification of either the 6 -4.5 or  31] -6-9 position alone has not produced an 
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inhibitor with the desired activity against both class A and class C [3-1actamases. 

modify both positions simultaneously. 

0 CH20H 0~0 ?~N 

oSU 
Io=. £o== £o,= 

Ciavulanic Acid Sulbactam Tazobactam 

Therefore, we decided to 

In the preceding publication, ~° we reported that the 6[3-(1-hydroxyethyl) group improved the [3-1actamase 

inhibitory activity of sulbactam against class C 13-1actamases whereas the 6[3-hydroxymethyl group increased the 

activity of sulbactam against both class A and class C [3-1actamases. Therefore, we decided to introduce 6[3-(1- 

hydroxyethyl) or 6[3-hydroxymethyl group onto the 6-position of tazobactam in order to enhance the activity 

against class C [3-1actamases, in particular. Here we report the synthesis and biological activity of a series of 

five 3,6-disubstituted pertain sulfone derivatives. 

Chemistry 

Two stereoselective processes (Schemes 1, 2, and 3) for the synthesis of five novel 3,6-disubstituted 

penam sulfone derivatives 11 were developed. 

Reaction of dibromosulfoxide 112 with 2-trimethylsilyl-2H-1,2,3-triazole (2) 13 in acetonitrile gave 

dibromotriazolylpenam 3 which was oxidized with KMnO4 to give dibromotriazolylpenam sulfone 4. 

Treatment of 4 with t-BuMgCl in THF, followed by reaction with acetaldehyde, provided a mixture of products 

5. Debromination of 5 with Bu3SnH produced a pure product 6 in high yield. 14 The stereochemical assignment 

about the 6-position of 6 was confirmed by the LH NMR coupling constant JHS-H6 = 4.6 HZ which is consistent 

with the cis configuration betweem H5 and H6J ° Deprotection of the benzhydryl group 8 of 6 with m-cresol 

provided 6[3-(l-hydroxyethyl)tazobactam (7) (Scheme 1). Similarly, 6[3-hydroxymethyltazobactam (10) was 

stereoselectively prepared from the dibromotriazolylsulfone 4 (Scheme 2). 6[3-Hydroxymethyl penam sulfones 

25 and 26 were synthesized in 12 steps 15 from dibromosulfide 1116 which was prepared in 2 steps from 6- 

aminopenicillanic acid (Scheme 3). The intermediates, 21 and 22, were separated by silica gel flash column 

chromatograhpy. 6[3-Hydroxymethyl penam sulfone 29 was synthesized from 20 in 4 steps (Scheme 4)J 5 
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Scheme 1: (a) 2/CH3CN, ~20%; (b) KMnO4/CH2CI2, ~100%, ; (c) t-BuMgCUTHF; (d) CH3CHO/THF , 53%; 
(e) Bu3SnH, 85%,; (f) m-cresol, 50 °C/NaHCO3, 80% 
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Scheme 2: (a) t-BuMgCI/THF; (b) CH20/THF , 30%; (c) Bu3SnH, 85%; (d) m-cresol, 50 °C/NaHCO3, 80% 
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Scheme 3: (a) t-BuMgCI/THF; (b) CH20/THF, 30-40%; (c) Bu3SnH, 81-88%; (d) TBS-Tf, 86-90%; (e) HCO2H/H202, 75-84%; 
(f) HSBT/toluene, -100%; (g) CICH2CO2H/AcOAg/CH2CI2, 18-22%; (h) KMnO4/AcOH, 79-88%; (i) thiourea]py/DMF, 97%; 
(j) PCC/silica gel, 64%; (k) Ph3P=CHCN , 73%; (I) NH4F.HF/DMF/NMP , 65%; (rn) m-cresol, 50 °C/NaHCO3, 80% 
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Scheme 4: (a) MeONH2.HCI/py/CH2CI 2, 89%; (b) NH4F.HF/DMF/NMP, 65%; 
(c) m-cresol. 50 °C/NaHCO 3, 80% 

Results and Discussion 

As is evident from Table 1, the 61~-(1-hydroxyethyl) group of 7 improved the IC50 of tazobactam by 397- 

fold against the AmpC (class C) I~-lactamase but it decreased the IC50 by 42-fold against the TEM-1 (class A) I~- 

lactamase. As expected, the 61~-hydroxymethyl group of 10 substantially improved the IC5o of tazobactam 

against both TEM-1 (ten fold) and AmpC (132-fold) ~-lactamases. 613-Hydroxymethyltazobactam (10) was also 

able to restore the activity of piperacillin in vitro and in vivo against the TEM-1 producing organism. At a 1:1 

ratio of piperacillin to 10, the MIC and EDso values of piperacillin were reduced from >64 Ixg/mL and 256-512 

mg/kg to 2 I, tg/mL and 3.6 mg/kg, respectively, against the TEM-1 producing organism. Disappointingly, 6[~- 

hydroxymethyltazobactam (10) was almost as ineffective as tazobactam in reducing the MIC and EDs0 values of 

piperacillin against the AmpC expressing bacterial isolate. Since Ro 48-1220 was reported to have better 

activity than tazobactam against AmpC [3-1actamases, 8 61$-hydroxymethyl derivative (25) of Ro 48-1220 and its 

related derivatives (26 and 29) were prepared. These three new 6[3-(hydroxymethyl)penam sulfone derivatives, 

25, 26, and 29, all demonstrated good IC50 against both TEM-I and AmpC 13-1actamases. They were all able to 

restore the in vitro activity of piperacillin at a ratio of 1:1 of piperacillin to the inhibitor (25, 26, or 29) against 

TEM-1 and AmpC 13-1actamases producing organisms. The activity of the Z-isomer 25 is little better than that 

of the E-isomer 26 and this observation is consistent with that of the 6-unsubstituted derivatives, Ro 48-1220 

and its E-isomer. 8 Of these three derivatives, 613-(hydroxymethyl)penam sulfone derivative 25 was the most 

active inhibitor which was selected for further in vivo evaluation. At a 2:1 ratio of piperacillin to 25, the EDso 

values for piperacillin were reduced from 256-512 mg/kg and 128-256 mg/kg to 4-8 mg/kg and 8-32 mg/kg 

against TEM-I and AmpC expressing bacterial isolates, respectively. 
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Table 1: Biological Activity of 3,6-Disubstituted Penam Sulfone Derivatives 

O O 
a, \ \ S  

~oo~ 

Ix~ N 
7: R 1 = 8~,S[~-CHsCH(OH), I ~ ,  - -N.~ . ,~  

N~ N 
lo: n~ = ~ ,  R~ = - - N ' , ~  

25: a~ = ~-HOCH2, n= = ~ C N  (Z) 

26: R 1 .~- 6~'HOCH2, R 2 = ~ C N  (E) 

29: R 1 = 613-HOCH 2, R 2 = = N " ~ ' O M e  

Ro 48-1220:R1 = H, R2 = ~ C N  (Z) 

IC50 (nM) 
Compound TEM-1 AmpC 

MIC (p.g/mL; 1: ld) EDso (mg/kg; 2:1 d; mice) 
E. coh  ~ S. m a r c e s c e n s  b E. c o h  "a S. m a r c e s c e n s  b 

7 2,500 120 >64~ 16 e . . . .  
10 6 360 2 c 16 e 3.6 125 
25 19 270 4 8 4-8 16-32 
26 74 280 16 4 . . . .  
29 64 280 8 16 . . . .  

Ro 48-1220 42 1,133 4 c 4 e 15 82 
Sulbactam 1,400 65,900 . . . . . . . .  
Tazobactam 60 47,700 2 32 7.7 144 

Piperacillin >64 32 256-512 128-256 

aGC6265, TEM-1 (class A); bGC4132, AmpC (class C); CGC2847, TEM-I (class A); 
d e piperacillin:inhibitor ratio; GC2894; AmpC (class C). 

In conclusion, a series of one 613-(1-hydroxyethyl) and four 6l~-hydroxymethyl penam sulfone 

derivatives have been synthesized and evaluated for their potency as inhibitois of i~-lactamases and as partners 

for piperacillin. The four 6~-hydroxymethyl penam sulfone derivatives all demonstrated good ICs0 against both 

TEM-1 and AmpC 13-1actamases. Of these, 6~-hydroxymethyl penam sulfone derivative 25 was the most active 

inhibitor which was able to restore the activity of piperacillin in vitro and in vivo against both TEM-1 and 

AmpC 13-1actamases producing organisms. 
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