

Bioorganic & Medicinal Chemistry Letters 11 (2001) 891-894

Design and Synthesis of Ether Analogues as Potent and Selective M₂ Muscarinic Receptor Antagonists

Yuguang Wang,* Samuel Chackalamannil, Wei Chang, William Greenlee, Vilma Ruperto, Ruth A. Duffy, Robert McQuade and Jean E. Lachowicz

Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

Received 27 November 2000; accepted 1 February 2001

Abstract—Novel, selective M_2 muscarinic antagonists, which replace the metabolically labile styrenyl moiety of the prototypical M_2 antagonist 1 with an ether linkage, were synthesized. A detailed SAR study in this class of compounds has yielded highly active compounds that showed M_2 K_i values of <1.0 nM and >100-fold selectivity against M_1 , M_3 , and M_5 receptors. © 2001 Elsevier Science Ltd. All rights reserved.

Acetylcholine is an important neurotransmitter that plays a key role in learning and memory.¹ The cognitive effects of acetylcholine are mediated by agonist-induced stimulation of post-synaptic nicotinic and muscarinic M₁ receptors.² Under normal physiological conditions, synaptic acetylcholine levels are modulated by a feedback shut off mechanism initiated by acetylcholineinduced stimulation of presynaptic M2 receptors. The senile dementia associated with Alzheimer's disease is directly correlated with depleted cholinergic activity in the cortical and hippocampal areas of brain and the current form of therapy addresses this issue by inhibiting cholinesterase, which breaks down acetylcholine. There have also been considerable efforts to develop an M₁ agonist for the treatment of Alzheimer's disease. Several M₁ agonists have been demonstrated to improve cognitive functions in clinical trials.³ Alternatively, selective inhibition of presynaptic M2 muscarinic receptors has been shown to enhance acetylcholine levels in vitro as well as in vivo.⁴ The success of this approach would greatly depend on selectively achieving M_2 receptor inhibition, since inhibition of post-synaptic M_1 receptors and peripheral M_1 and M_3 receptors carries the potential liabilities of serious side effects.

In a previous communication,⁵ we have described the design and synthesis of highly potent and selective M_2 antagonists represented by structure 1 (Fig. 1). In vitro metabolism studies on these compounds using rat liver microsomes gave the aldehyde 3^6 as the principal metabolite which presumably arises through the rearrangement of the putative intermediate epoxide 2. Since the epoxide 2 as well as the aldehyde 3 has potential toxic liabilities, we redirected our efforts toward identifying an ethylidine replacement. Herein we wish to report the successful outcome of our efforts.

An ether linkage was explored as a surrogate for the ethylidine unit (Fig. 2). The C–O–C bond angle of ethers ranges from 124° (diphenyl ether) to 111.5°

Figure 1. Metabolism of 1.

*Corresponding author. Tel.: +1-908-740-3508; fax: +1-908-740-4563; e-mail: yuguang.wang@spcorp.com

0960-894X/01/\$ - see front matter \odot 2001 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(01)00100-7

R = sulfonamides, amides, and carbamates

Figure 2. Designed targets.

(dimethyl ether),⁷ roughly corresponding to an sp² carbon and the lone pair of electrons somewhat emulating the potential role, if any, of the π electrons of the ethylidine unit. Additionally, we decided to replace the *p*-methoxy substitute of the phenyl ring by a metabolically less labile methylenedioxy group.⁸ Based on this rationale, the following two types of targets were explored.

The synthesis of these compounds from commercially available starting materials is described in Scheme 1. Reduction of ketone 4 was followed by coupling with 4-iodophenol to produce ether 5. Displacement of the iodo group of 5 with suitably substituted benzenethiol gave intermediate $6,^9$ deprotection of which with trifluoroacetic acid followed by reductive amination afforded 8. Oxidation of 8 with *m*CPBA followed by deprotection gave sulfone 10, which was transformed to the final targets by functionalization of the piperidine nitrogen as shown in Scheme 1.¹⁰

The binding affinity of the newly synthesized targets against cloned human muscarinic receptors, assayed according to the reported protocol,¹¹ is presented in Table 1.

As shown in Table 1, the direct replacement of the ethylidine moiety of 12 with an oxygen atom to generate compound 13 resulted in reduced M_2 binding affinity by about 1000-fold. However, the lost binding affinity of 13 could be restored to a reasonable level by replacement of the 4-methoxy group with a 3,4-methylenedioxy group (14). These results indicated that the decreased binding affinity of ether derivatives could be compensated for by appropriate structural modification in other parts of the molecule. Due to the excellent M_2 binding affinity of compound 14, we selected the type 2 targets

containing the methelenedioxyphenyl moiety for further SAR studies by varying the substituents on the piperidine nitrogen.

A representative SAR of the sulfonamide series is presented in Table 2. It is evident that the binding affinity is affected by the size of the alkyl sulfonyl group. Compounds with smaller and unbranched sulfonyl alkyl groups (14 and 15) demonstrated higher M_2 binding affinity. However, their selectivity versus M_1 , M_3 , and M_5 are low. Aromatic 1-naphthyl sulfonamide 19 showed low M_2 binding affinity and selectivity.

The data for carbamate derivatives are presented in Table 3. Since most of the carbamates reported in the previous communication had high M_2 binding affinity with low selectivity,⁵ a few carbamates were prepared in the ether series also. The results in Table 3 are consistent with the results previously reported. In spite of the excellent M_2 binding affinity, we have so far been unable to achieve acceptable selectivity in the carbamate series.

The most promising results were obtained from the amide series (Table 4). The selection of the R groups for the amide series greatly affects M_2 binding affinity and selectivity. Substituted alkyl amides 23 and 24 are less potent and selective. Aromatic amide 25 improved M_2 binding affinity by 10-fold, but it has low M_2 selectivity versus other receptor subtypes. Unlike the sulfonamide series (19), introduction of a 1-naphthyl group (26) in the amide series dramatically increased both the M_2 binding affinity and selectivity. This result provided a new direction for SAR modification.

Since the amide series offered superior M_2 binding and selectivity profile compared with the sulfonamide series, we focused further modifications on the amide series. A series of amides with 1-naphthyl bioisosteres was prepared. The results are shown in Table 5. Among the quinoline analogues, the position of the nitrogen atom plays an important role for M_2 binding and selectivity. For example, 4-quinoline analogue **27** is highly potent with 100-fold selectivity versus M_1 , M_3 , and M_5 while the 8-quinoline analogue **(29)** showed low M_2 potency and selectivity. Introduction of 2,3-dimethyl phenyl

Scheme 1. (a) NaBH₄, EtOH, 100%; (b) Ph₃P, DEAD, THF, 4-iodophenol, 64%; (c) 4-methoxybenzenethiol or 3,4-methylenedioxybenzenethiol, DMPU, CuI, K₂CO₃, 50–70%; (d) 30% TFA/CH₂Cl₂, 100%; (e) NaBH(AcO)₃, 1,2-dichloroethane, **4**, 70–85%; (f) MeSO₃H/mCPBA, 25%TFA/CH₂Cl₂, 50–70%; (g) sulfonyl chloride, chloroformate, or acyl chloride, Et₃N, CH₂Cl₂, 85–98%.

Table 1. Comparison of M₂ binding affinity among different series

1

12

13

14

Table 2. Results of M₂ binding affinity and selectivity of the sulfonamide series

0

SO2-n-C3H7

1.6

3,4-Methylenedioxy

compound	R	(nM)	141/1412	1013/1012	1414/1412	1015/1012
15	Et	2.0	49	122	12	46
14	$n-C_3H_7$	1.6	58	46	25	39
16	$i-C_3H_7$	14.0	10	2	2	16
17	$n-C_4H_9$	6.9	35	50	4	35
18	CH ₂ Ph	15.0	19	12	4	1
19	1-Naphthyl	34.7	2	8	1	4

Table 3. Results of M₂ binding affinity and selectivity of the carbamate series

Compound	R	M ₂ , <i>K</i> _i (nM)	$M_{1}/M_{2} \\$	M_3/M_2	$M_4\!/M_2$	M ₅ /M ₂
20	Et	6.0	4	2	1	14
21	i-C ₃ H ₇	3.2	59	19	7	10
22	Ph	1.1	48	61	11	69

Table 4. Results of M₂ binding affinity and selectivity of the amide series

Compound	R	M ₂ , <i>K</i> _i (nM)	M_{1}/M_{2}	M_3/M_2	$M_4\!/M_2$	M_5/M_2
23	CH ₂ OC ₂ H ₃	17.9	6	5	2	13
24	CH ₂ OPh	59.5	8	5	3	13
25	Ph	1.6	18	6	6	15
26	1-Naphthyl	0.5	357	216	28	50

Table 5. Results of M₂ binding affinity and selectivity of 1-naphthyl bioisosteres

, D _o C	

Compound	R	M ₂ , <i>K</i> _i (nM)	M_{1}/M_{2}	M_3/M_2	M_4/M_2	M_{5}/M_{2}
26	1-Naphthyl	0.5	357	216	28	50
27	4-Quinoline	1.0	140	117	18	1485
28	5-Quinoline	0.5	233	124	21	64
29	8-Quinoline	12	9	10	2	4
30	2,3-DiMePh	0.4	155	132	31	56
31	2-(3-Methylthiophenyl)	0.2	234	109	23	196

group (30) also resulted in excellent M_2 binding affinity and selectivity. Compounds 27 and 31 have the best overall M₂ binding and selectivity profile among the ether analogues.

In summary, the metabolically labile alkene group has been successfully replaced with an ether linker. The results of SAR studies showed that the 1-naphthyl group and its bioisosteres contribute to high M₂ binding affinity and selectivity in the amide series. Complete results of SAR studies, as well as the in vivo efficacy studies for the amide series, will be reported in due course of time.

Acknowledgements

The authors would like to thank Mr. Yao H. Ing and Dr. P. Das for mass spectral data, Dr. N. J. Murgolo for molecular modeling studies, and Dr. J. W. Clader for helpful discussion.

References and Notes

1. (a) Op Den Velde, W.; Stam, F. C. J. Am. Geriatr. Soc. 1976, 24, 12. (b) Perry, E. K.; Gibson, P. H.; Blessed, G.; Perry, R. H.; Tomlinson, B. E. J. Neurol. Sci. 1997, 34, 247.

(a) Dorje, F.; Wess, J.; Lambrecht, G.; Tacke, R.; Mutschler, E.; Brann, M. R. *J. Pharmacol. Exp. Ther.* **1991**, *256*, 727.
 (b) Bolden, C.; Cusack, B.; Richelson, E. J. Pharmacol. Exp. Ther. **1992**, *260*, 576.

3. (a) Avery, E. E.; Baker, L.; Asthana, S. *Drug Ther.* **1997**, *11*, 450. (b) Sauerberg, P.; Jeppessen, L.; Olesen, P. H.; Sheardown, M. J.; Finkjensen, A.; Rasmussen, T.; Rimvall, K.; Shannon, H. E.; Bymaster, F. P.; DeLapp, N. W.; Calligaro, D. O.; Ward, J. S.; Whitesitt, A. C.; Thomsen, C. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 2897. (c) Xu, R.; Sim, M. K.; Go, M. L. J. Med. Chem. **1998**, *41*, 1404.

4. (a) Farlow, F. R.; Evans, R. M. *Neurology* 1998, *51*, S36.
(b) Quirion, R.; Wilson, A.; Rowe, W.; Aubert, I.; Richard, J.; Doods, H. N.; Parent, A.; White, N.; Meaney, M. J. *J. Neurosci.* 1995, *15*, 1455. (c) Doods, H. N. *Drugs Future* 1995, *20*, 157.

5. Wang, Y.; Chackalamannil, S.; Hu, Z.; Clader, J. W.; Greenlee, W.; Billard, W.; Binch, H., III; Crosby, G.; Ruperto, V.; Duffy, R.; McQuade, R.; Lachowicz, J. E. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 2247.

6. Metabolite **3** was confirmed by analysis with an authentic sample.

7. March, J. Advanced Organic Chemistry; John Wiley & Sons: New York, 1985; pp 20–21.

8. Silverman, R. B. *The Organic Chemistry of Drug Design and Drug Action*; Academic: San Diego, 1992; Chapter 7.

9. 3,4-Methylenedioxybenzenethiol was prepared according to the procedure in ref 8.

10. All of the target compounds showed satisfactory results in the analyses of NMR, MS, LC/MS, and HRMS.

11. For radioligand binding analysis, each muscarinic receptor subtype was stably expressed in CHO-K1 cells. Clonal cell lines were selected which expressed receptors at levels between 1 and 9 pmol/mg protein. The K_d of QNB (l-quinuclidinyl benzilate) at each receptor subtype was determined by saturation binding using 5-2500 pM [³H]QNB in 10 mM potassium phosphate buffer, pH 7.4. Protein concentrations were adjusted for each assay to achieve between 700 and 1500 cpm specific binding. Competition binding experiments were performed using 180 pM [³H] QNB. All binding experiments were performed in the presence of 1% DMSO and 0.4% methylcellulose. Non-specific binding was defined by 0.5 mM atropine. After equilibrium was reached (120 min incubation at rt), bound and free radioactivity were separated by filtration using Whatman GF-C filters. Investigation of M2 receptor antagonist activity was performed on related compounds by measuring the effects of the compound's adenylyl cyclase inhibition mediated by oxotremorine M. K_i was expressed as mean of duplicate value (SEM < 15%). All determinations were performed at least twice.