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Abstract: A cationic rhodium(I)–H8-BINAP complex catalyzes a
[2+2+2] cycloaddition of 1,6- and 1,7-diynes with acyl phospho-
nates in high yields with high regioselectivity. Interestingly, the re-
activity of a,w-diynes toward acyl phosphonates is highly
dependent on their own structures.
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Catalytic [2+2+2] cycloadditions1 of diynes with C(sp2)-
heteroatom multiple bonds such as aldehydes and ketones
by using various transition-metal complexes as catalysts
have been reported.2–6 Recently, several groups have uti-
lized rhodium-based catalysts for this transformation. Oji-
ma and co-workers reported an intramolecular [2+2+2]
cycloaddition of diynal in their study of a [2+2+2+1] cy-
cloaddition with CO using [Rh(cod)Cl]2 as a catalyst.7

Kong and Krische reported a cationic rhodium(I)–
BIPHEP [2,2¢-bis(diphenylphosphino)-1,1¢-biphenyl]-
catalyzed carbonyl Z-dienylation via multicomponent re-
ductive coupling of aldehydes and a-keto esters mediated
by hydrogen in the presence of a catalytic amount of tri-
phenylacetic acid, which involves carbonyl insertion into
cationic rhodacyclopentadienes.8,9 We have reported cat-
ionic rhodium(I)–H8-BINAP-catalyzed [2+2+2] cycload-
ditions of 1,6-diynes with both activated and unactivated
carbonyl compounds with alkynes.10,11 On the other hand,
we have recently determined that alkynylphosphonates
are suitable substrates for cationic rhodium(I)–H8-
BINAP-catalyzed [2+2+2] cycloadditions.12 Accordingly,
we anticipated that acyl phosphonates, which are useful
building blocks for the synthesis of functionalized phos-
phorus compounds via alkylation13 or olefination,14 would
show high reactivity in cationic rhodium(I)–H8-BINAP-
catalyzed [2+2+2] cycloaddition (Scheme 1).15,16 In this
communication, we describe a cationic rhodium(I)–H8-
BINAP-catalyzed [2+2+2] cycloaddition of acyl phos-
phonates with 1,6-diynes leading to phosphonate-substi-
tuted dienones.

We first investigated the reaction of tosylamide-linked
1,6-diyne 1a with acetyl phosphonate 2a in the presence
of a cationic rhodium(I)–bisphosphine complex as a cata-
lyst (Table 1). We were pleased to find that the reaction
proceeded at room temperature to give the desired di-
enone 3aa in moderate yield using 10 mol% of a
[Rh(cod)2]BF4–BINAP complex (entry 1). Among the bi-
arylbisphosphine ligands examined, the highest yield of
3aa was obtained when H8-BINAP was used as a ligand
(entry 3). Non-biarylbisphosphine ligand dppb, which
possesses a large bite angle, could be used, but the yield
was very low (entry 4). After optimization of the reaction
conditions, we determined that the reaction was complet-
ed within one hour and the use of two equivalents of 2a
further improved the yield of 3aa (entry 5).

Thus, we explored the scope of this process with respect
to both acyl phosphonates and a,w-diynes (Table 2). Not
only acetyl phosphonate (2a, entry 1) but also benzoyl
phosphonate (2b, entry 2) could participate in this reac-
tion. With respect to 1,6-diynes, not only symmetrical 1,6-
diynes 1a but also unsymmetrical 1,6-diynes 1b and 1c re-
acted with acyl phosphonates to give the corresponding
dienones in good yields with perfect regioselectivity (en-
tries 3 and 4). Interestingly, the reactivity of a,w-diynes is
highly dependent on their own structures. Terminal 1,6-
diyne 1d failed to react with 2b due to the rapid homocy-
clotrimerization of 1d (entry 5).17 Tosylamide-linked in-
ternal 1,6-diyne 1a smoothly reacted with 2b (entry 2),
while malonate- and dimethoxypropane-linked internal
1,6-diynes 1e and 1f failed to react with 2b, and they re-
mained unchanged (entries 6 and 7). In the case of 1,7-
diynes, although internal 1,7-diyne 1g failed to react with
2b (entry 8), the reaction of terminal 1,7-diyne 1h with
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Table 1 Screening of Ligands for Rh-Catalyzed [2+2+2] Cycloaddition of 1,6-Diyne 1a with Acetyl Phosphonate 2aa

Entry Ligand 2a (equiv) Time (h) Yield (%)b

1 BINAP 1.1 16 55

2 Segphos 1.1 16 67

3 H8-BINAP 1.1 16 73

4 dppb 1.1 16 13

5 H8-BINAP 2.0 1 84

a [Rh(cod)2]BF4 (0.010 mmol), ligand (0.010 mmol), 1a (0.10 mmol), 2a (0.11 or 0.20 mmol), and CH2Cl2 (1.5 mL) were used.
b Isolated yield.
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Table 2 Rh(I)+–H8-BINAP-Catalyzed [2+2+2] Cycloaddition of 1,6- and 1,7-Diynes 1 with Acyl Phosphonates 2a

Entry 1 (Z, R1, R2) 2 (R3) 3 Yield (%, E/Z)b

1 1a (NTs, Me, Me) 2a (Me) 3aa 84 (88:12)c

2 1a (NTs, Me, Me) 2b (Ph) 3ab 90 (40:60)

3 1b (NTs, Me, CO2Me) 2b (Ph) 3bb 71 (59:41)c

4 1c (NTs, Me, H) 2a (Me) 3ca 78 (40:60)

5 1d (NTs, H, H) 2b (Ph) 3db 0 (–)d

6 1e [C(CO2Me)2, Me, Me] 2b (Ph) 3eb 0 (–)e

7 1f [C(CH2OMe)2, Me, Me] 2b (Ph) 3fb 0 (–)e

8 1g (CH2CH2, Me, Me) 2b (Ph) 3gb 0 (–)e

9 1h (CH2CH2, H, H) 2a (Me) 3ha 70 (60:40)

10 1h (CH2CH2, H, H) 2b (Ph) 3hb 76 (63:37)

a [Rh(cod)2]BF4 (0.020 mmol), H8-BINAP (0.020 mmol), 1a–h (0.20 mmol), 2a,b (0.40 mmol), and CH2Cl2 (1.5 mL) were used.
b Isolated yield.
c Isolated as a mixture of E/Z isomers.
d Homo-[2+2+2] cycloaddition of 1d proceeded.
e Diynes 1 remained almost unchanged.
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acyl phosphonates proceeded in good yields (entries 9 and
10).17

As we already demonstrated that keto esters are highly re-
active coupling partners for cationic rhodium(I)–H8-
BINAP-catalyzed [2+2+2] cycloaddition with 1,6-diynes,
a chemoselective [2+2+2] cycloaddition of 1e with acyl

phosphonate 2b and keto ester 2c was investigated in the
presence of the cationic rhodium(I)–H8-BINAP catalyst
(Scheme 2). We anticipated that 1e selectively reacts with
2c leading to ester-substituted dienone 3ec. Contrary to
our expectation, 1e reacted with both 2b and 2c.

As the presence of keto ester 2c plays an important role in
the present catalysis, the amount of 2c was examined as
shown in Table 3. Increasing the amount of 2c decreased
the yield of 3eb and increased the yield of 3ec (entries 1–
4). However, dimethoxypropane-linked 1,6-diyne 1f and
ethylene-linked 1,7-diyne 1g failed to react with 2b even
in the presence of 2c (entries 5 and 6).

Scheme 3 depicts a possible mechanism for the rhodium-
catalyzed [2+2+2] cycloaddition of tosylamide-linked
1,6-diyne 1a with benzoyl phosphonate 2b. The reaction
of 1a and 2b with rhodium generates an equilibrium mix-
ture of intermediates A and B through the bidentate coor-
dination of both 1a and 2b.18 Intermediate B subsequently
undergoes oxidative coupling leading to intermediate C.
Insertion of another alkyne moiety of 1a furnishes inter-
mediate D. Reductive elimination of rhodium followed by
electrocyclic ring opening furnishes dienone 3ab. Indeed,
a homo-[2+2+2] cycloaddition product of 1a through a
rhodacyclopentadiene intermediate was not observed in
the reaction of 1a and 2b.

On the other hand, the equilibration of intermediates A
and E–H may account for the results shown in Table 3
(Scheme 4).
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Table 3 Rh(I)+–H8-BINAP-Catalyzed [2+2+2] Cycloaddition of 
1,6-and 1,7-Diynes 1e–g with Benzoyl Phosphonate (2b) in the Pres-
ence of Ethyl Phenylglyoxylate (2c)a

Entry 1 (Z) 2c 
(equiv)

3eb–gb 3ec–gc

Yield 
(%, E/Z)b

Yield 
(%, E/Z)b

1 1e [Z = C(CO2Me)2] 0 0c –

2 1e [Z = C(CO2Me)2] 0.2 74 (52:48) 19 (29:71)d

3 1e [Z = C(CO2Me)2] 1.1 37 (52:48) 62 (29:71)d

4 1e [Z = C(CO2Me)2] 2.0 5 (45:55) 76 (29:71)d

5 1f 
[Z = C(CH2OMe)2]

1.1 0c 0c

6 1g (Z = CH2CH2) 1.1 0c 0c

a [Rh(cod)2]BF4 (0.020 mmol), H8-BINAP (0.020 mmol), 1e–g (0.20 
mmol), 2b (0.22 mmol), 2c (0–0.40 mmol), and CH2Cl2 (1.5 mL) 
were used.
b Isolated yield.
c Diynes 1 remained almost unchanged.
d Isolated as a mixture of E/Z isomers.
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In the absence of keto ester 2c, two molecules of benzoyl
phosphonate 2b coordinate to rhodium in a bidentate fash-
ion to generate intermediate A due to higher coordination
ability of 2b than that of malonate-linked 1,6-diyne 1e,
which results in no conversion of 1e. In the presence of 2c,
an equilibrium mixture of intermediates A, E, and F may
be generated. Subsequent ligand exchange between 1e
and weakly coordinated 2c may generate intermediates G
and H, which furnish dienones 3eb and 3ec, respectively,
depending on the amount of 2c.18 Dimethoxypropane-
linked 1,6-diyne 1f fails to react with both intermediates
E and F presumably due to lower coordination ability of
ether oxygen than that of ester carbonyl oxygen. Obvious-
ly, ligand exchange between ethylene-linked 1,7-diyne 1g
bearing no heteroatom in the linker and 2c would be diffi-
cult to proceed.17

In conclusion, we have determined that a cationic rhodi-
um(I)–H8-BINAP complex catalyzes a [2+2+2] cycload-
dition of 1,6- and 1,7-diynes with acyl phosphonates in
high yields with high regioselectivity. Interestingly, the
reactivity of a,w-diynes toward acyl phosphonates is
highly dependent on their own structures.19
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(t, J = 7.2 Hz, 6 H). 13C NMR (75 MHz, CDCl3): d = 193.3, 
159.8, 148.7, 148.4, 147.6, 147.4, 143.7, 136.9, 133.1, 
132.4, 131.8, 129.9, 128.22, 128.16, 127.91, 127.89, 127.62, 
127.58, 127.3, 62.1, 62.0, 57.9, 54.8, 28.8, 21.5, 20.3, 20.2, 

16.2, 16.1. 31P NMR (121 MHz, CDCl3): d = 14.5.
Compound (Z)-3ab: pale yellow oil. 1H NMR (300 MHz, 
CDCl3): d = 7.76 (d, J = 8.4 Hz, 2 H), 7.41–7.24 (m, 5 H), 
7.17–7.09 (m, 2 H), 4.52 (s, 2 H), 4.51–4.28 (m, 2 H), 3.92–
3.67 (m, 2 H), 3.78–3.52 (m, 2 H), 2.40 (s, 3 H), 2.32 (s, 3 
H), 1.68 (d, J = 2.7 Hz, 3 H), 1.04 (t, J = 7.2 Hz, 6 H). 13C 
NMR (75 MHz, CDCl3): d = 193.9, 148.7, 148.6, 145.3, 
145.2, 143.7, 136.0, 135.9, 134.0, 133.5, 132.04, 132.03, 
131.1, 129.8, 128.83, 128.77, 128.53, 128.51, 127.83, 
127.80, 127.5, 62.14, 62.06, 59.0, 55.3, 28.7, 21.5, 21.4, 
21.2, 16.1, 16.0. 31P NMR (121 MHz, CDCl3): d = 14.0.
Compound 3bb: pale yellow oil. 1H NMR (300 MHz, 
CDCl3): d (E-isomer) = 7.73 (d, J = 7.8 Hz, 2 H), 7.41–7.05 
(m, 7 H), 4.60 (t, J = 4.2 Hz, 2 H), 4.37 (t, J = 4.2 Hz, 2 H), 
3.91–3.77 (m, 2 H), 3.77–3.60 (m, 2 H), 3.36 (d, J = 0.9 Hz, 
3H), 2.43 (s, 3 H), 2.38 (s, 3 H), 1.05 (t, J = 7.2 Hz, 6 H); d 
(Z-isomer) = 7.57 (d, J = 7.5 Hz, 2 H), 7.41–7.05 (m, 5 H), 
6.99 (d, J = 7.2 Hz, 2 H), 4.23 (t, J = 4.2 Hz, 2 H), 4.13–3.91 
(m, 6 H), 3.82 (s, 3 H), 2.43 (s, 3 H), 2.22 (s, 3 H), 1.19 (t, 
J = 7.2 Hz, 6 H). 13C NMR (75 MHz, CDCl3): d = 194.1, 
193.7, 165.3, 164.8, 164.5, 143.7, 143.6, 141.0, 140.6, 
140.5, 140.4, 140.3 138.7, 138.6, 138.5, 138.41, 138.38, 
136.2, 136.0, 134.9, 134.8, 133.8, 133.7, 133.0, 129.8, 
129.7, 128.6, 128.52, 128.49, 128.45, 128.22, 128.17, 127.9, 
127.8, 127.6, 127.5, 127.4, 63.0, 62.9, 62.8, 59.88, 59.86, 
59.3, 55.5, 55.3, 53.1, 52.5, 29.0, 28.8, 21.42, 21.38, 16.1, 
16.0, 15.9. 31P NMR (121 MHz, CDCl3): d (E-isomer) = 
11.9; d (Z-isomer) = 11.0.
Compound (E)-3ca: pale yellow oil. 1H NMR (300 MHz, 
CDCl3): d = 7.73 (d, J = 8.1 Hz, 2 H), 7.35 (d, J = 8.1 Hz, 2 
H), 7.29–7.16 (m, 1 H), 4.46–4.35 (m, 4 H), 4.18–4.03 (m, 4 
H), 2.44 (s, 3 H), 2.21 (s, 3 H), 1.85 (dd, J = 15.0, 1.5 Hz, 3 
H), 1.33 (t, J = 7.2 Hz, 6 H). 13C NMR (75 MHz, CDCl3): d 
= 194.0, 144.2, 141.7, 141.3, 135.5, 134.8, 133.2, 133.1, 
132.9, 132.5, 130.0, 127.5, 62.3, 62.2, 57.8, 55.0, 29.9, 21.5, 
16.4, 16.3, 14.9, 14.8. 31P NMR (121 MHz, CDCl3): d = 
19.3.
Compound (Z)-3ca: pale yellow oil. 1H NMR (300 MHz, 
CDCl3): d = 7.74 (d, J = 8.1 Hz, 2 H), 7.33 (d, J = 8.1 Hz, 2 
H), 6.77–6.54 (m, 1 H), 4.51–4.43 (m, 2 H), 4.37–4.29 (m, 2 
H), 4.07–3.90 (m, 4 H), 2.42 (s, 3 H), 2.20 (s, 3 H), 2.04 (dd, 
J = 13.2, 1.8 Hz, 3 H), 1.24 (t, J = 7.2 Hz, 6 H). 13C NMR (75 
MHz, CDCl3): d = 194.1, 143.9, 143.8, 143.7, 134.2, 134.0, 
133.9, 133.6, 133.48, 133.47, 131.9, 129.8, 127.6, 62.1, 
62.0, 59.1, 59.0, 55.0, 29.8, 22.1, 22.0, 21.5, 16.3, 16.2. 31P 
NMR (121 MHz, CDCl3): d = 16.7.
Compound (E)-3eb: pale yellow oil. 1H NMR (300 MHz, 
CDCl3): d = 7.25–7.15 (m, 3 H), 7.07–6.97 (m, 2 H), 4.12–
3.91 (m, 4 H), 3.60 (s, 6 H), 3.10–3.02 (m, 2 H), 2.95 (s, 2 
H), 2.35 (d, J = 3.3 Hz, 3 H), 2.18 (s, 3 H), 1.20 (t, J = 7.2 
Hz, 6 H). 13C NMR (75 MHz, CDCl3): d = 195.4, 171.0, 
152.0, 151.7, 151.6, 151.4, 137.4, 137.3, 133.8, 129.8, 
128.8, 128.7, 127.8, 127.5, 127.3, 61.9, 61.8, 56.8, 53.0, 
44.9, 40.8, 29.0, 20.2, 20.1, 16.2, 16.1. 31P NMR (121 MHz, 
CDCl3): d = 15.6.
Compound (Z)-3eb: pale yellow oil. 1H NMR (300 MHz, 
CDCl3): d = 7.40–7.28 (m, 3 H), 7.22–7.16 (m, 2 H), 3.96–
3.70 (m, 4 H), 3.74 (s, 6 H), 3.70–3.30 (m, 4 H), 2.33 (s, 3 
H), 1.79 (d, J = 2.4 Hz, 3 H), 1.10 (t, J = 7.2 Hz, 6 H). 13C 
NMR (75 MHz, CDCl3): d = 195.8 152.4, 152.2, 150.1, 
150.0, 136.8, 136.6, 133.9, 130.5, 129.11, 129.05, 128.4, 
128.0, 127.5, 127.4, 61.9, 61.8, 57.3, 53.0, 45.6, 41.0, 28.9, 
21.1, 20.9, 16.1, 16.0. 31P NMR (121 MHz, CDCl3): d = 
14.7.
Compound (E)-3ha: pale yellow oil. 1H NMR (300 MHz, 
CDCl3): d = 9.66 (s, 1 H), 7.14–7.00 (m, 1 H), 4.20–3.95 (m, 
4 H), 2.34–2.14 (m, 4 H), 1.77 (dd, J = 14.4, 1.8 Hz, 3 H), 
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1.75–1.59 (m, 4 H), 1.34 (t, J = 7.2 Hz, 6 H). 13C NMR (75 
MHz, CDCl3): d = 192.2, 154.0, 153.7, 140.9, 140.7, 135.6, 
131.6, 129.2, 62.0, 61.9, 30.6, 21.7, 21.6, 21.2, 16.4, 16.3, 
14.2, 14.1. 31P NMR (121 MHz, CDCl3): d = 20.3.
Compound (Z)-3ha: pale yellow oil. 1H NMR (300 MHz, 
CDCl3): d = 9.79 (s, 1 H), 6.70–6.60 (m, 1 H), 4.12–3.92 (m, 
4 H), 2.35–2.15 (m, 4 H), 2.04 (dd, J = 13.2, 1.8 Hz, 3 H), 
1.74–1.56 (m, 4 H), 1.28 (t, J = 7.2 Hz, 6 H). 13C NMR (75 
MHz, CDCl3): d = 192.6, 155.6, 155.5, 141.0, 140.9, 135.1, 
131.7, 129.3, 61.7, 61.6, 31.4, 21.8, 21.7, 21.6, 21.5, 21.1, 
16.4, 16.3. 31P NMR (121 MHz, CDCl3): d = 17.6.
Compound (E)-3hb: pale yellow oil. 1H NMR (300 MHz, 
CDCl3): d = 9.85 (s, 1 H), 7.54 (d, J = 23.1 Hz, 1 H), 7.32–
7.13 (m, 5 H), 4.18–3.99 (m, 4 H), 2.16–2.00 (m, 4 H), 1.57–

1.41 (m, 4 H), 1.26 (t, J = 7.2 Hz, 6 H). 13C NMR (75 MHz, 
CDCl3): d = 191.6, 153.3, 153.0, 142.4, 142.2, 137.3, 135.9, 
135.0, 134.4, 134.3, 128.6, 128.5, 128.4, 128.20, 128.17, 
62.5, 62.4, 30.92, 30.90, 21.7, 21.0, 16.3, 16.2. 31P NMR 
(121 MHz, CDCl3): d = 17.2.
Compound (Z)-3hb: pale yellow oil. 1H NMR (300 MHz, 
CDCl3): d = 9.93 (s, 1 H), 7.45–7.31 (m, 5 H), 7.08–6.88 (m, 
1 H), 4.08–3.83 (m, 4 H), 2.50–2.38 (m, 2 H), 2.34–2.21 (m, 
2 H), 1.75–1.64 (m, 4 H), 1.18 (t, J = 7.2 Hz, 6 H). 13C NMR 
(75 MHz, CDCl3): d = 192.4, 155.5, 155.4, 144.4, 144.3, 
138.5, 138.4, 137.7, 135.3, 135.17, 135.15, 128.3, 128.12, 
128.05, 62.1, 62.0, 31.24, 31.21, 21.9, 21.7, 21.1, 16.2, 16.1. 
31P NMR (121 MHz, CDCl3): d = 15.1.
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