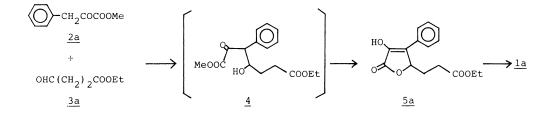
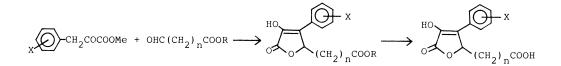

Chem. Pharm. Bull. 35(6)2594—2597(1987)

> AN EFFICIENT SYNTHESIS OF WF-3681, A NOVEL ALDOSE REDUCTASE INHIBITOR, AND ITS RELATED COMPOUNDS

Takayuki Namiki, Yasutaka Suzuki, Kozo Sawada, Yoshikuni Itoh, Teruo Oku, Yoshihiko Kitaura,¹⁾ and Masashi Hashimoto^{*} Exploratory Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 5-2-3 Tokodai, Toyosato-machi, Tsukuba-gun, Ibaraki 300-26, Japan


WF-3681 (<u>la</u>), an aldose reductase inhibitor, and its related compounds (<u>lb-lj</u>) have been synthesized by aldol condensation of phenylpyruvates and w-formylalkanoates as a key step. KEYWORDS --- fungal metabolite; aldose reductase inhibitor; aldol condensation; phenylpyruvate; w-formylalkanoate

We previously described the structure and synthesis of WF-3681 (<u>la</u>), a novel aldose reductase inhibitor isolated from *Chaetomella* species.^{2,3)} Here we report an expeditious synthesis of this inhibitor and its related compounds and analyze their biological activity.



<u>1a</u>

We anticipated that the α -hydroxybutenolide ring system of WF-3681 could be constructed by aldol condensation of phenylpyruvate (e.g.,<u>2a</u>) with 3-formylpropionate (e.g.,<u>3a</u>) followed by lactonization of the resulting hydroxy keto ester <u>4</u> as depicted in Chart 1.⁴) Hydrolysis of the side-chain ester group in the product <u>5a</u> would afford compound <u>1a</u>, which was expected to be identical in *all respects* with the natural WF-3681, since the latter had been isolated as *a racemic mixture*.³)

Methyl phenylpyruvate (<u>2a</u>) (mp 55-60°C) was prepared by methylating phenylpyruvic acid (MeI/DBU/DMF, 0°C, 87%).⁵⁾ Ethyl 3-formylpropionate (<u>3a</u>) [bp 68-78°C (7mmHg)] was prepared according to the method reported in the literature.⁶⁾ The key aldol condensation was conducted by stirring <u>2a</u> and <u>3a</u> in the presence of DBU in DMF at 0°C for 2.5 h. Under these conditions, the desired product <u>5a</u> (mp 116-118°C) was obtained directly in 72% yield. The structure was characterized on the basis of its physical data [EIMS m/z 276 (M⁺); IR(nujol) 3270,

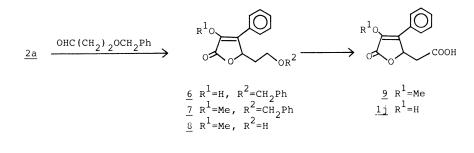
<u>2b</u>	X=4-C1	<u>3b</u> R=Bu ¹¹ ; n=0	<u>5b</u>	X=4-Cl; R=Et; n=2	<u>1b</u>	X=4-C1; n=2
<u>c</u>	X=4-Me	\underline{c} R=Me; n=3	c	X=4-Me; R=Et; n=2	<u>c</u>	X=4-Me; n=2
d	X=4-OCH ₂ Ph		d	X=4-OCH ₂ Ph; R=Et;	<u>d</u>	X=4-OCH ₂ Ph; n=2
e	X=3,4-diCl			n=2	e	X=3,4-diCl; n=2
f	X=3-CF ₃ ,4-OMe		e	X=3,4-diCl; R=Et;	f	X=3-CF ₃ ,4-OMe;
	-			n=2		n=2
			f	X=3-CF ₃ ,4-OMe;	g	X=H; n=0
				R=Et; $n=2$	<u>h</u>	X=H; n=3
			g	X=H; R=Bu ⁿ ; n=0	i	X=4-OH; n=2
			h	X=H; R=Me; n=3		

Table I. Synthesis of Compounds Related to WF-3681

Starting	Aldol condensation			Hydrolysis		
material	Product	mp(°C)	Yield(%)	Product	mp(°C)	Yield(%)
$\frac{2b^{a}}{2c^{a}} + \frac{3a}{3a}$ $\frac{2c^{a}}{2a^{a}} + \frac{3a}{3a}$ $\frac{2d^{a}}{2e^{a}} + \frac{3a}{3a}$ $\frac{2e^{a}}{2f^{b}} + \frac{3a}{3a}$	<u>5b</u>	121-122	60	<u>1b</u>	181-182	96
$\frac{2c^{a}}{2} + \frac{3a}{2}$	5c	108-109	61	lc	168-169	100
$2d^{a}$ + $3a$	<u>5d</u>	130-131	72	<u>1d</u>	198-199	60
$\frac{2e^{a}}{1} + \frac{3a}{2}$	<u>5e</u>	109-111	70	le	179-180	86
$\underline{2f}^{b}$ + $\underline{3a}$	<u>5f</u>	168-169	51	<u>lf</u>	224-226	87
$\underline{2a} + \underline{3b}^{c}$	5g	108-109	87	\underline{lg}^{d})	189-190	45
$\underline{2a} + \underline{3c}^{C}$	<u>5h</u>	78-79	45	<u>1h</u>	179-180	88
				$\underline{1i}^{e}$	251-253	57

a) Prepared from methyl 2,2-dimethoxy-3-(substituted phenyl)propionates, synthesized according to the known procedure,7) by heating in HCO₂H (65-70°C).

b) Prepared in the same way as for <u>2a</u>.


c) Prepared according to the known procedures.8)

d) Hydrolysis was achieved by using 1N NaOH/THF at room temp.

e) Prepared by treating 5d with 3N HCl/AcOH(100°C,4h).

1740, 1705 cm⁻¹; NMR(CDCl₃) δ : 1.27 (3H, t, J=7Hz), 1.75 (1H, m), 2.32-2.77 (3H, m), 4.16 (2H, q, J=7Hz), 5.51 (1H, dd, J=2, 9Hz), 6.74 (1H, s)]. Acid hydrolysis of <u>5a</u> (3N HCl/AcOH, 100°C, 1h) yielded WF-3681 (<u>1a</u>)(100%), which was identified with the natural product³) in all respects.

The synthesis of <u>la</u> is highly efficient and provides the amounts necessary for detailed biological tests. Moreover, this method is applicable to the preparation of compounds related to <u>la</u>. Some compounds having substituents on the benzene ring (<u>lb-lf</u> and <u>li</u>) and modified carboxylic acid side-chains (<u>lg</u> and <u>lh</u>) were thus prepared (Chart 2) and are listed in Table I. However, we were unable to achieve the aldol reaction using ethyl formylacetate,⁹⁾ probably due to the formation of an anion on the formylacetate rather than the phenylpyruvate. Therefore, we chose, for the preparation of <u>lj</u>, 3-benzyloxypropionaldehyde¹⁰⁾ as the starting material and carried out the reaction with methyl phenylpyruvate under the above conditions to obtain α -hydroxybutenolide <u>6</u> (mp 112-113°C, 69%). Conversion of <u>6</u> to <u>lj</u> (mp 204-205°C) was achieved via <u>7</u> (oil), <u>8</u> (mp 82-84°C), and <u>9</u> (mp 159-160°C) by a sequence of reactions (1. CH₂N₂/MeOH, 100%; 2. Pd-black/HCO₂H-MeOH, 90%; 3. CrO₃/H₂SO₄/acetone, 65%; 4. BBr₃/CH₂Cl₂, 26%) (Chart 3).

Ch	ar	t	3
C11	ur	-	-

Compound	IC ₅₀ (M)	Compound	IC ₅₀ (M)
<u>1a</u>	$2.5 \times 10^{-7} 9.2 \times 10^{-8} 8.4 \times 10^{-8} 4.9 \times 10^{-8} 9.8 \times 10^{-8} $	1f	5.1×10^{-8}
<u>1b</u>		1i	1.6×10^{-7}
<u>1c</u>		1g	>1.0 x 10^{-5} b)
<u>1d</u>		1j	>1.0 x 10^{-5} c)
<u>1e</u>		1h	1.0 x 10^{-5}

Table II. Inhibition of Rabbit Lens Aldose Reductase^{a)}

 a) Enzyme activity was assayed by a modified method² described in the literature.¹¹

- b) A 45% inhibition at 1.0 x 10^{-5} M.
- c) A 44% inhibition at 1.0 x 10^{-5} M.

The aldose reductase inhibitory activity of the new compounds above are shown in comparison with that of <u>la</u> in Table II. All the substituted benzene derivatives were more active than WF-3681, showing that the introduction of the lipophilicity tends to increase the activity. Modification of the carboxylic acid side-chain was found to decrease the activity, indicating that the side-chain length plays an important part in the activity.

ACKNOWLEDGEMENT We are grateful to Dr. K. Yoshida, Dr. Y. Notsu, and their colleagues for the biological assays.

REFERENCES AND NOTES

- 1) Present address: Pfizer Central Research, 25 Taketoyo, Chita, Aichi, Japan.
- M. Nishikawa, Y. Tsurumi, T. Namiki, K. Yoshida, and M. Okuhara, J. Antibiot., in press.
- I. Uchida, Y. Itoh, T. Namiki, M. Nishikawa, and M. Hashimoto, Tetrahedron Lett., 27, 2015 (1986).
- 4) Several reports on the reactions similar to our approach have appeared:
 G. M. Ksander and J. E. McMurry, Tetrahedron Lett., No.51, 4691 (1976) and references therein; M. Nose, A. Kobayashi, T. Yamanishi, M. Matsui, and
 S. Takei, Nippon Nogeikagaku Kaishi, <u>57</u>, 557 (1983) and references therein.
- The compound <u>2a</u> had been prepared by methylation with CH₂N₂ in the literature:
 B. S. Deol, D. D. Ridley, and G. W. Simpson, Aust. J. Chem., <u>29</u>, 2459 (1976).
- 6) M. Winter, F. Näf, A. Furrer, W. Pickenhagen, W. Giersch, A. Meister,B. Willhalm, W. Thommen, and G. Ohloff, Helv. Chim. Acta, 62, 135 (1979).
- 7) F. Huet, M. Pellet, and J. M. Conia, Synthesis, 1979, 33.
- 8) For the preparation of n-butylglyoxalate (<u>3b</u>), see H. C. J. Ottenheijm,
 R. M. J. Liskamp, S. P. J. M. Van Nispen, H. A. Boots, and M. W. Tijhuis,
 J. Org. Chem., <u>46</u>, 3273 (1981). For the preparation of methyl
 4-formylbutyrate (<u>3c</u>), see M. Huckstep, R. J. K. Taylor, and M. P. L. Caton,
 Synthesis, 1982, 881.
- 9) S. M. McElvain and R. L. Clarke, J. Am. Chem. Soc., <u>69</u>, 2657 (1947).
- 10) A. P. Kozikowski and P. D. Stein, J. Org. Chem., 49, 2301 (1984).
- 11) S. Hayman and J. H. Kinoshita, J. Biol. Chem., 240, 877 (1965).

(Received March 26, 1987)