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Asymmetric Hydrogenation of Aromatic, Aliphatic, and o,f}-
Unsaturated Acyl Silanes Catalyzed by Tol-binap/Pica Ruthenium(II)
Complexes: Practical Synthesis of Optically Active a-Hydroxysilanes**
Noriyoshi Arai, Ken Suzuki, Satoshi Sugizaki, Hiroko Sorimachi, and Takeshi Ohkuma*

Optically active a-hydroxysilanes are regarded as a kind of
chiral organometallic compound with a functional group.
These molecules and their derivatives have been utilized for
stereocontrolled C—C bond formation and rearrangement,
which resulted in a variety of chiral organic compounds.'™!
Asymmetric reduction of acyl silanes is a straightforward
method to produce the chiral secondary o-hydroxysilanes.
Hydroboration with  B-chlorodiisopinocampheylborane
(Ipc,BCl) is the most widely used method for this important
transformation.!"**57"1 The chiral oxazaborolidine reagent
is effective for the reaction of acetylenic acyl silanes. "> A
chiral lithium amide reduces a,B-unsaturated acyl silanes with
excellent enantioselectivity.®! However, these procedures
require more than one equivalent of the chiral reagent to
the substrate.

A recently reported transfer hydrogenation catalyzed by
an arene/N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine
(Ts-dpen) Ru" complex using 2-propanol as a reducing agent
is effective for aromatic acyl silanes.”™ Although this is the
only catalytic chemical process for this reaction, the substrate-
to-catalyst molar ratio (S/C) of 33-200 is not satisfactory for
practical use. Asymmetric microbial reductions are reported
to exhibit high stereoselectivity merely for specific acyl silane
substrates.”>” Thus, the development of an efficient proce-
dure for the catalytic asymmetric reduction of acyl silanes is
highly desirable. Hydrogenation possesses advantages over
many other reduction methods from the atom-economical
and practical points of view.""!

Herein, we disclose for the first time the highly enantio-
selective hydrogenation of acyl silanes catalyzed by Tol-
binap/pica Ru" complexes."""?! The reaction is conducted
with a S/C value as high as 10000 under 10 atm of H,. A series
of benzylic, aliphatic, and allylic a-hydroxysilanes is obtained
in up to 99 % ee.
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Benzoyl-tert-butyldimethylsilane (1a; Scheme 1), pre-
pared by a reported procedure,™ was selected as a typical
substrate for screening the reaction conditions. Hydrogena-
tion of 1a (0.42 g, 0.48Mm) in ethanol with [RuCL{(S)-Tol-
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Scheme 1. Asymmetric hydrogenation of acyl silanes.

binap}(pica)] [(S)-3a;* 0.94 mg, 0.24 pum, S/C =2000] and ¢-
C,Hy,OK (1.0Mm in fert-butyl alcohol, 40 uL, 10 mm) at 24°C
under H, (10 atm) was completed in 1 h to afford the (R)-a-
hydroxysilane (R)-2a in 96% ee and 96 % yield of isolated
product (Scheme 1 and Table 1, entry 1). When the concen-
tration of base was increased to 50 mm, the yield of 2a was
slightly decreased with formation of the benzyl silyl ether as a
by-product (Table 1, entry 2). This is because cleavage of the
Si—C(OH) bond of 2a through a Brook-type rearrangement
occurred under the conditions of higher base concentra-
tion.['

The 1 mmMm concentration of base was not enough to
activate the precatalyst 3a for conversion to the active RuH
species (Table 1, entry 3).'") KOH was usable instead of ¢-
C,H,OK (Table 1, entry 4), but employment of the less basic
K,CO; or DBU decreased the reactivity, even at a higher
concentration of base (40 mm; Table 1, entries5 and 6).
NaBH,, a metal hydride, also activated 3a, although the
efficiency was much less than that of +~C,H,OK (Table 1,
entry 7). The Ru complex 3b with 4,5-di-tert-butylpicolyl-
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Table 1: Asymmetric hydrogenation of 1a.
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Table 2: Asymmetric hydrogenation of acyl silanes.”!

Entry Ru catalyst S/CP! Activator [mm] t[h] Yield [%]9 ee [%]
1 (5)-3 2000  tBuOK (10) 1 9% 96

2 (93 2000 tBuOK (50) 1 928 95

3 (5)-3 1000 tBuOK (1) 1 < nd'¢

4 (5)-3 1600 KOH (10) 1 94 96

5 (53 30 K,CO, (40) 6 92 95

6 (53 400 DBU (40)" 6 94 9%

7 (53 300 NaBH, (10) 10 94 97

8 (53 1200  tBuOK (10) 6 9 97

9 500 tBuOK (20) 301 ndd

[a] Unless otherwise stated, reactions were conducted using 1.0—
2.1 mmol of 1a (0.4-0.5 M) in ethanol containing a Ru catalyst and an
activator at 20-25°C under 10 atm of H,. [b] Substrate/catalyst molar
ratio. [c] Yield of isolated (R)-2a. [d] Data for (R)-2a determined by chiral
HPLC analysis. [e] A benzyl silyl ether was obtained as a by-product.
[f] Conversion determined by 'H NMR analysis. [g] Not determined.
[h] DBU =1,8-diazabicyclo[5.4.0]undec-7-ene. [i] [RuCl,{(S)-binap}{(S,S)-
dpen}] was used as a catalyst in 2-propanol.

amine (DTB-pica) instead of the original pica showed
comparably high enantioselectivity, while the activity was
relatively lower (Table 1, entry 8).

Notably, a catalyst system consisting of trans-[RuCL{(S)-
binap}{(S,S)-dpen}] and -C,H,OK in 2-propanol, which
shows high activity and enantioselectivity for the hydro-
genation of simple ketones, was virtually inert for this
transformation (Table 1, entry 9).''®) The flat pyridine
moiety of the pica ligand is crucial to achieve high reactivity
for the hydrogenation of sterically hindered acyl silanes. Thus,
we chose the following standard reaction conditions: preca-
talyst, 3; activator, t-C,H,OK (10 mm); solvent, ethanol; H,
pressure, 10 atm; temperature, 20-25°C.

The catalyst system hydrogenated aromatic, aliphatic, and
a,p-unsaturated acyl silanes with high reactivity and enantio-
selectivity. Absolute configurations of new hydroxysilanes
were estimated by a modified Mosher method (see the
Supporting Information)." Hydrogenation of 1a (0.75m)
with (S,5)-3a at a S/C value of 10000 in ethanol containing ¢-
C,H,OK (10 mm) at 23°Cunder H, (10 atm) produced (R)-2a
in 95% ee and 96% yield of isolated product (Table 2).
Although benzoyldimethylphenylsilane (1b) is more base-
labile than 1a, it was also hydrogenated with high enantio-
selectivity under a lower concentration of base (5 mm).

Benzoyl substrates with an electron-donating CH;0O
group or an electron-attracting F atom at the meta or para
position of the phenyl ring (1c—e) were converted to the o-
hydroxysilanes 2¢c—e in the same ee of 96 %. The electronic
features of the aromatic moieties did not affect the enantio-
selectivity, while introduction of the electron-withdrawing
function accelerated the reaction rate. Hydrogenation of
acetyl-fert-butyldimethylsilane (1f), a simple aliphatic sub-
strate, mediated by (S)-3a in base-containing ethanol
afforded the (R)-a-hydroxysilane (R)-2f in 98% ee. The
sense of enantioselection was the same as that in the reaction
of benzoylsilane 1a. The Tol-binap/DTB-pica Ru complex 3b
showed the same enantioselectivity.

Acetyldimethylphenylsilane (1g), which is extremely
labile in basic alcoholic media, was hydrogenated with (S)-
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(R)-2
1 Ru catalyst S/Ct! t[h] Yield [%] ee [%]
13 (5)-3 10000 2.5 96 95

1b (9)- 3a 900 1 80 96

1c ()3 1000 3.5 90 96

1d (5)-3 500 5 90 96

Te (5)-3 1600 1.5 96 96

1f ()3 2000 3 88 98

1f (5)-3 800 3 99 98

1g (53 1100 1 85 93

1h (53 600 1 88 97

1i ()3 1200 6 99 91

1i (5)-3 b”“ 500 6 97 95

1j ()3 900 4 77 99

1k (5)-3 600 1 83 98

11 (5)-3 600 1.5 94 99

Tm ()3 350 1 84 89

Tn (5)-3 300 1 820 87Ul

1o (5)-3 350 1 54 90

[a] Unless otherwise stated, reactions were conducted using 0.9-
1.4 mmol of ketone 1 (0.4-0.7 M) in ethanol containing a Ru catalyst 3
and t-C4H,;OK (10 mm) at 20-26°C under 10 atm of H,. [b] Substrate/
catalyst molar ratio. [c] Yield of isolated product. [d] Chiral GC or HPLC
analysis. [e] Reaction using 18.4 mmol (4.05 g) of 1a. [f] The concen-
tration of t-C,H,OK was 5 mm. [g] NaBH, (15 mm) was used as catalyst
activator. [h] CH;OH/t-C,H,OH (3:7) was used as solvent. [i Deter-
mined by '"H NMR analysis. [j] Determined after conversion to the N-
phenylcarbamate.

3a using NaBH, (15 mm) as an activator to give (R)-2g in
93% ee and 85 % yield of isolated product. Hydrogenation of
pentanoyldimethylphenylsilane (1h) afforded the hydroxysi-
lane 2h in 97 % ee; t-C,H,OK (10 mm) could be used as an
activator in this reaction. Hexanoyl-tert-butyldimethylsilane
(1i) was hydrogenated with 3ain 91 % optical yield. When the
reaction was conducted with complex 3b, the optical yield was
increased to 95%. Use of a CH;0H/-C,H,OH (3:7) mixed
solvent gave slightly better stereoselectivity. The “remote
effect” of ftert-butyl groups on the pyridine ring (see the
catalyst structure) may originate from suitable fixation of the
catalyst conformation for enantioface selection of this sub-
strate. Hydrogenation of secondary alkyl acyl silanes 1j-1 in
the presence of (S)-3a afforded the (R)-a-hydroxysilanes (R)-
2j-1 in >98% ee. Tri-n-butyl(propanoyl)stannane,” a tin
analogue of 1, was not converted under the standard hydro-
genation conditions.

Complex 3a also effects asymmetric hydrogenation of
a,B-unsaturated acyl silanes to the optically active allylic a-
hydroxysilanes, although these conjugated acyl silanes readily
undergo 1,4-reduction in general.l"*! Hydrogenation of (E)-
2-hexenoyl-tert-butyldimethylsilane (1m) in the presence of
(5)-3a (S/C=350) and -C,H,OK (10 mM) in ethanol under
H, (10 atm) was completed in 1 h to afford the R allylic a-
hydroxysilane (R)-2m in 89 % ee and 84 % yield of isolated
product (Table 2). The 1,2-reduction occurred exclusively
over the 1,4-reduction, while conjugate addition of ethoxide
occurred as a side reaction in less than 5% yield. Such
predominant 1,.2-reduction selectivity for o,p-unsaturated
acyl silanes is achieved only by this hydrogenation catalyzed
by a Tol-binap/pica Ru complex, hydroboration with
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Ipc,BCL13* 4 and a chiral lithium amide® reduction. In the
same manner, hydrogenation of (E)-2-decenoyl-tert-butyldi-
methylsilane (1n) afforded (R)-2n in 87 % ee and 82 % yield.
When (E)-2-hexenoyldimethylphenylsilane (10) was hydro-
genated with (S)-3a under the standard conditions, (R)-20
was obtained in 90% ee and 54 % yield accompanied by
messy by-products as a result of the extreme lability of 10.>!]

The chiral allylic a-hydroxysilane (R)-2m was readily
converted to (R)-4-n-heptyl-2-pentenone [(R)-6n]?” through
the Ireland—Claisen rearrangement!*!! without loss of enan-
tioselectivity (Scheme 2). Acetylation of (R)-2mn in 87 % ee

-78 °Cto RT

0}
OH (CH,C0),0 Q)J\
: (C,Hs);N, DMAP :
NGty X"giT = pCH X giT
| t-C4Hg 92% | "+=C4Hg
(R)-2n, 87% ee (R)-4n
0 (0]
1. LDA, THF 1. (COCI),
2. TBSCI, HMPA iJ\/O\H benzene
n-CHy > siT

2. AICl, s
n-C;Hys

3.1 MHCI i CH,CI
| “t-C4Hy CH2Cl2

82% (R)-5n 0°CtoRT 2y 6n, 86% ee
79%

Scheme 2. Conversion of a-hydroxysilane to cyclopentenone with reten-
tion of configuration. DMAP = 4-dimethylaminopyridine; LDA = lithium
diisopropylamide; TBSCl =tert-butyldimethylsilyl chloride; HMPA =
hexamethylphosphoramide.

under standard conditions gave (R)-4m in 92% yield.
Deprotonation of 4n with LDA followed by treatment with
t-C,Hy(CH;),SiCl in the presence of HMPA at —78°C,
warming to room temperature, and hydrolysis with an acid
afforded the chiral 5-silyl-4-pentenonic acid (R)-5n in 82 %
yield. Intramolecular vinylation of the acid anhydride of Sn
mediated by AICI; resulted in the chiral enone (R)-6n in
86% ee and 79% yield (see the Supporting Information).!
In conclusion, we report here the first example of the
highly reactive and enantioselective hydrogenation of acyl
silanes catalyzed by Tol-binap/pica Ru" complexes 3 with a
base or a metal hydride activator in ethanol. A series of
aromatic, aliphatic, and a,fB-unsaturated acyl silanes is con-
verted to the corresponding o-hydroxysilanes in excellent ee.
Allylic a-hydroxysilanes with high enantio- and regioselec-
tivity are obtained in the reaction of o,B-unsaturated com-
pounds. Thus, this method provides a new, efficient, and
practical route to producing chiral silane compounds.

Experimental Section

General procedure for hydrogenation of acyl silanes: Hydrogenation
of 1aillustrates the typical reaction procedure using standard Schlenk
techniques. A degassed (three freeze—thaw cycles) solution of solid
(5)-3a (1.7 mg, 1.8 umol), +-C,H,OK (24.5 mg, 0.22 mmol), and 1a
(4.05 g, 18.4 mmol) in ethanol (20 mL) was placed in a 100-mL glass
autoclave equipped with a teflon-coated magnetic stirring bar.
Hydrogen was introduced into the autoclave at a pressure of
10 atm, and then the reaction mixture was vigorously stirred at
23°C for 2.5 h. After carefully venting the hydrogen gas, the solvent
was removed under reduced pressure. The residue was purified by
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silica-gel column chromatography with ethyl acetate/hexane (1:20) as
eluent to give (R)-2a (faintly yellow oil, 3.94 g, 96 % yield, 95 % ee).
The ee of 2a was determined by HPLC analysis: column, Chiral-
cel OD-H; eluent, hexane/2-propanol (9:1); flow rate, 0.5 mLmin';
column temperature, 40°C; retention time (fz) of (R)-2a, 17.5 min
(97.6%); tg of (5)-2a, 11.4min (2.4%). [a]¥=+954 (c=1.08,
CH,Cl,); literature™ [a]% = —81.6 (¢ =1.02, CH,Cl,), 82% ee (S).
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