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The aldol reaction ranks among the premier methods for
carbon ± carbon bond formation in chemical synthesis. Ad-
vances in both diastereoselective and enantioselective proc-
esses have produced remarkable achievements in the syn-
thesis of stereochemically complex structures.[1] In contrast to
the wealth of empirical and theoretical data available for
diastereoselective aldol additions of metalloenolates to alde-
hydes,[2] mechanistic understanding of catalytic asymmetric
processes with enol silanes is less advanced. Insight into the
latter would be of considerable assistance in the design of
newer, more efficient methods for asymmetric synthesis.[3]

We recently reported a catalytic aldol addition of the silyl
dienolate 1 to a range of aldehydes in the presence of a
bisphosphanyl-CuII fluoride complex which is generated in
situ from (S)-Tol-BINAP,[4] Cu(OTf)2, and (Bu4N)Ph3SiF2

(Scheme 1).[5] Aromatic, heteroaromatic, and a,b-unsaturated
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Scheme 1. Catalytic aldol addition of 1 to aldehydes.

aldehydes furnished aldol adducts with up to 95 % ee and in
98 % yield. Importantly, we postulated a metalloenolate as a
key intermediate in the catalytic cycle.[6, 7] This role for a late
transition metal catalyst contrasts the more conventional
function of such metals as Lewis acids in related processes
(AgI,[8] CuII,[9] PdII,[6a±c] and NiII [10]). Here we report chemical
and spectroscopic data that support the postulated catalytic
cycle and the involvement of metalloenolate and metal
aldolate intermediates.

In mechanistic studies of the Cu-mediated reaction we
observed that 5 mol % of the corresponding CuIF complex
(prepared in situ from (S)-Tol-BINAP, [CuOTf ´ C6H6], and
(Bu4N)Ph3SiF2) served equally well in the catalytic aldol
reaction of 1 and benzaldehyde (7; 94 % ee and 97 % yield).

reflections with I> s(I) were used in the refinement of 302 parameters. The
procedure was the same as for 5a.

Crystallographic data (excluding structure factors) for the structures
reported in this paper have been deposited with the Cambridge Crystallo-
graphic Data Centre as supplementary publication no. CCDC-102 362 and
CCDC-102 363. Copies of the data can be obtained free of charge on
application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax:
(�44) 1223-336-033; e-mail : deposit@ccdc.cam.ac.uk).
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This result, along with the known reduction of CuII to CuI by
ketone-derived enol silanes,[11] suggested that a CuI complex
functions as the catalytically relevant species. In the postu-
lated catalytic cycle (Scheme 2), CuI complex 5 reacts with 1

to generate metallodienolate 6,[12] which undergoes aldol
addition to form the copper alkoxide 8. Silylation by 1
converts 8 into the silylated adduct 9 with concomitant
regeneration of metalloenolate 6. This mechanistic pathway
suggests that direct entry into the catalytic cycle may be
possible with a CuI alkoxide. Accordingly, when the aldol
reaction was conducted with 5 mol % of [Cu(OtBu){(S)-tol-
binap}] (10) (from (S)-Tol-BINAP�CuOtBu[13]), aldol ad-
ducts were obtained for a range of aldehydes in yields and
enantioselectivities identical to those that were obtained with
the corresponding CuI or CuII fluoride complexes. These
observations are not only consistent with the intermediacy of
a CuI alkoxide species, but also underscore the ability of a
metal alkoxide to participate in the catalytic cycle. For further
in-depth spectroscopic studies, this more direct approach to
the catalytic cycle was employed since it avoids salt formation
and redox processes.

The progress of the reaction of trimethylsilyl dienolate 1, 7,
and 5 mol% of 10 at ÿ78 8C in THF was monitored under an
inert atmosphere by IR spectroscopy (ReactIR, Figure 1).[14]

The IR spectrum of the starting dienolate 1 in THF displays a

Figure 1. ReactIR of the reaction of 1, 7, and 5 mol % of 10.

characteristic resonance at 1671 cmÿ1, which was monitored
throughout the progress of the reaction. When 7 (1710 cmÿ1)
and 10 were added, a time-dependent diminution in the
intensity of the bands was observed for each reactant, with the

emergence of a new absorption
signal at 1729 cmÿ1, which we
assigned to the aldol adduct 9.[15]

Additional insight into the
process was obtained by exami-
nation of the reaction with stoi-
chiometric amounts of complex
10. Thus, treatment of 1 with one
equivalent of 10 resulted in rapid
disappearance of the dienolate
signal at 1671 cmÿ1 and the emer-
gence of two bands at 1690 and
1550 cmÿ1,

which we assigned to the cop-
per enolate 6. This species was
stable at ÿ78 8C, but subsequent
addition of 7 resulted in replace-
ment of the two bands by a new
resonance at 1729 cmÿ1 for ad-
duct 8.[15]

Metalation experiments provided supporting evidence for
assignment of the resonances at 1690 and 1550 cmÿ1 to an
intermediate metalloenolate (Figure 2, Scheme 3). Reaction
of 1 with (Bu4N)Ph3SiF2 produced a new species (1625 cmÿ1),
which we assigned as the naked enolate 11.[16] Addition of one
equivalent of [Cu(ClO4){(S)-tol-binap}][17] resulted in the

Figure 2. Metalation experiment depicted in Scheme 2 monitored by
ReactIR.

Scheme 3. IR absorption maxima of the participating species.
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Scheme 2. Catalytic cycle with the metalloenolate 6 as central intermediate. OTf� trifluoromethane-
sulfonate.
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Titanocene complexes are versatile catalysts for a large
number of reactions.[1±11] The reaction of Me3SiH with
pyridine catalyzed by heterogeneous platinum-group catalysts
was reported many years ago.[12] We now report the first
examples of the hydrosilylation of pyridines with homoge-
neous, titanocene-based catalysts, and the first example of
homogeneously catalyzed hydrosilylation of an aromatic
substrate.

Typically, the reaction was carried out without solvent with
a 2:1 molar ratio of silane to pyridine and 10 mol % of
[Cp2TiMe2] (based on pyridine) at 80 oC [Eq. (1)], but an inert
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+   (PhMeHSi)n

generation of the same two peaks (1690 and 1550 cmÿ1) that
were observed by direct metalation of 10 with 1. These were
also replaced by the signal corresponding to adduct 8 after the
addition of 7.[15]

In summary we have shown that tol-binap ± copper(i)
complexes are active catalysts for the asymmetric addition
of dienolate 1 to aldehydes. Utilization of CuOtBu for the
preparation of the catalyst permits a more direct entry into
the catalytic cycle, avoids the introduction of spectator salts,
and circumvents redox chemistry. Successful initiation of the
reaction by CuOtBu suggests that a copper(i) alkoxide is
recursively generated throughout the reaction process. Addi-
tionally, we document spectroscopic and chemical evidence
for the existence of a copper enolate as a reactive species.
Such a process provides a conceptual and practical alternative
to the well-established Lewis acid promoted stereoselective
aldol reactions. The development of asymmetric, catalytic
carbonyl additions that proceed through metalloenolates
offers considerable opportunities for the design of new
catalysts in asymmetric organic synthesis.
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