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Abstract: A highly selective hydroalkynylation of
internal alkynes with silylacetylenes giving 1,3-
enynes was realized by use of a hydroxorhodium
catalyst. As a key intermediate in the catalytic
cycle, an alkynylrhodium(I) complex was isolated
and investigated for its structure and reactivity.
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As a straightforward and economical method for pre-
paring conjugate enynes, which are important building
blocks in organic synthesis,[1] the catalytic dimeriza-
tion of alkynes has attracted considerable attention.
Although several protocols have been developed for
the homo-dimerization of terminal alkynes,[2,3] there
are only a few examples of selective cross-dimeriza-
tion between terminal alkynes and internal ones,[4,5]

mainly because the terminal alkynes are highly reac-
tive towards homo-dimerization or oligomerization.
Here we describe that a hydroxorhodium(I) complex
efficiently catalyzes the addition of silylacetylenes to
internal alkynes giving conjugate enynes with high se-
lectivity and that its catalytic cycle involves an alky-
nylrhodium(I) complex as a key intermediate.

A hydroxorhodium(I) complex coordinated with
binap was found to be highly effective in catalyzing
the addition of silylacetylenes to internal alkynes to
give high yields of the cross-dimerization products
with high selectivity. Thus, the reaction of 1-phenyl-1-
propyne (1a) with (triphenylsilyl)ethyne (2m) (1a/
2m=1/1.5) in the presence of a catalytic amount of
[Rh(OH)((R)-binap)]2

[6] (5) (5 mol% Rh) in 1,4-diox-
ane at 40 8C for 1 h gave a 90% yield of (E)-1-triphe-
nylsilyl-3-methyl-4-phenylbut-1-yn-3-ene (3am) to-
gether with a minor amount (4%) of its regioisomer
(E)-4am [Eq. (1)].[7] The formation of (E)-isomers in-

dicates that the hydroalkynylation took place in a syn
fashion.[8]

In previous studies on the rhodium-catalyzed di-
merization of terminal alkynes, alkynylrhodium ACHTUNGTRENNUNG(III)
hydride or vinylidene-rhodium species have been pro-
posed as key intermediates.[2a,b,9] In our studies, we
succeeded in isolating and characterizing an alkynylr-
hodium(I) complex, which gave us significant insights
into the mechanism of the present hydroalkynylation.
Thus, treatment of [Rh(OH)((R)-binap)]2 (5) with si-
lylacetylene 2m and triphenylphosphine in toluene at
80 8C for 1 h brought about the selective formation of
alkynylrhodium(I) complex 6 coordinated with binap
and triphenylphosphine, which was isolated in 86%

yield [Eq. (2)].[10,11] The 31P NMR spectrum of the
complex 6 in C6D6 showed three ddd peaks (32.6,
35.5, and 37.8 ppm) [Figure 1, (i)], which are charac-
teristic for square planar rhodium complexes coordi-
nated with three non-equivalent phosphorus atoms.[6]

The complex 6 was also formed in the reaction of hy-
droxorhodium 5 with propargylic alcohol 7 in place of
2m, which should proceed via b-alkynyl elimination
on an alkoxorhodium intermediate.[12] The alkynyl
complex 6 was fully characterized by introduction of
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the silylethynyl group incorporated with 13C at either
the a or b position.[13] The 13C-labeled (90% 13C) rho-
dium complexes, 6-13C(a) and 6-13C(b), were obtained
in high yields by the elimination reaction with specifi-
cally 13C-labeled propargylic alcohols 7 [Eq. (3)]. The

31P NMR spectrum of the complex 6-13C(a) in C6D6

consisted of three dddds, where each peak has an ad-
ditional coupling with 13C(a), the coupling constants
(2JC,P) being 21, 22, and 92 Hz for the peaks at 32.6,
35.5, and 37.8 ppm, respectively [Figure 1, (ii)]. The
13C NMR signal of the complex 6-13C(a) appeared at
155.0 ppm as dddd where the coupling constant be-
tween rhodium and 13C (1JRh,C(a)) is 43 Hz [Figure 1,
(iii)] . In the 13C NMR spectrum of 6-13C(b) (dddd,
117.7 ppm), all four coupling constants including
2JRh,C(b) =10 Hz are much smaller than those observed
for 6-13C(a). These 31P and 13C NMR spectra clearly
indicate the direct connectivity between a rhodium
center and the silylethynyl group.

A stoichiometric reaction of the alkynylrhodium
complex 6 with alkyne 1a (6/1a=1/1) in the presence

of acetic acid (1 equiv.) was found to proceed at 80 8C
to give a 78% yield of the hydroalkynylation product
[3am/4am=90/10, Eq. (4)]. The high reaction temper-

ature compared with that (40 8C) for the catalytic re-
action is probably because the strongly coordinating
triphenylphosphine ligand occupies a coordination
site required for the activation of the alkyne prior to
its insertion into the alkynyl-rhodium bond. Unfortu-
nately, attempts to isolate a but-3-yn-1-enylrhodium
intermediate before protonolysis were not successful,
probably due to its instability under the reaction con-
ditions. On monitoring the reaction of 1a with 2m cat-
alyzed by complex 6 (5 mol%) at 80 8C, which gave a
high yield of the hydroalkynylation products in 3 h
[Eq. (5)], 31P NMR spectrometry of the reaction mix-

ture showed that the alkynylrhodium complex 6 is a
dominant species while the catalytic hydroalkynyla-
tion is proceeding.

On the basis of the results observed above which
demonstrated the intermediacy of the alkynylrhod-

Figure 1. 31P and 13C NMR spectra (at 202 MHz for 31P and 125 MHz for 13C in C6D6 at room temperature) of alkynylrhodi-
um complexes. (i) 31P NMR spectrum of complex 6. (ii) 31P NMR spectrum of 6-13C(a). (iii) 13C NMR spectra of 6-13C(a)
[left, C(a)] and 6-13C(b) [right, C(b)].
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ium(I) species in the present hydroalkynylation, a cat-
alytic cycle is proposed as illustrated in Scheme 1. A
hydroxorhodium complex A which is in equilibrium

with dimeric hydroxorhodium 5,[14] undergoes a reac-
tion with the terminal alkyne to form an alkynylrho-
dium(I) B and water. Insertion of the internal alkyne
into the carbon-rhodium bond in B forms an alkenylr-
hodium species C. s-Bond metathesis between alke-
nylrhodium C and the terminal alkyne or hydrolysis
followed by alkynylation by way of A gives the enyne
product to regenerate the alkynylrhodium intermedi-
ate B.[5] The observation of the alkynylrhodium com-
plex 6 as a dominant rhodium species during the cata-
lytic reaction may indicate that alkynylrhodium B is a
resting stage in the catalytic cycle.

As summarized in Table 1, [Rh(OH)((R)-binap)]2

(5) efficiently catalyzed the addition of (triphenyl-
silyl)ethyne (2m) to several types of phenyl-
ACHTUNGTRENNUNG(alkyl)acetylenes 1b–1e to give over 90% yields of
the corresponding enynes 3 with high regioselectivity
(entries 1–3 and 5). The reaction of 2d on a 2-mmol
scale with a reduced amount of the rhodium catalyst
(2 mol%) successfully proceeded to give enyne 3dm
in 87% yield (entry 4). The addition to alkenylacety-
lene 1f also proceeded with high regioselectivity
(entry 6). As a terminal acetylene, (triethylsilyl)- (2n)
and (triisopropylsilyl)ethyne (2o) can be used as
well,[15] the addition to propargylic alcohol 1e giving
high yields of the corresponding enynes 3 (entries 7
and 8). For the addition to dialkylacetylenes, 4-octyne
(1g) and 1,4-dimethoxy-2-butyne (1h), a rhodium
complex coordinated with 1,6-bis(diphenylphosphi-
no)hexane (dpph), generated in situ from [Rh(OH)-
ACHTUNGTRENNUNG(cod)]2 and dpph, was more effective than the binap
complex 5 to give enynes 3gm and 3hm in higher
yields [Eq. (6)].[16] The addition of 2m to 2-butynoate
1i was also catalyzed by the dpph-rhodium catalyst.

In summary, highly selective hydroalkynylation of
internal alkynes with silylacetylenes giving 1,3-enynes
was realized by use of a hydroxorhodium catalyst. As
a key intermediate in the catalytic cycle, an alkynyl-

rhodium(I) complex was isolated and investigated for
its structure and reactivity.

Experimental Section

Typical Procedure

To a solution of [Rh(OH)((R)-binap)]2 (5) (7.4 mg,
0.010 mmol of Rh) in 1,4-dioxane (0.40 mL) in a screw-cap
test tube was added (triphenylsilyl)acetylene (85.3 mg,
0.30 mmol) and 1-phenyl-1-propyne (23.2 mg, 0.20 mmol)
successively, and the tube was capped tightly. Then, the mix-
ture was allowed to stir at 40 8C (bath temperature) for 1 h.
The reaction mixture was passed through a short silica gel
column eluting with Et2O. Evaporation of the solvent fol-
lowed by preparative thin-layer chromatography on silica
gel (eluent: n-hexane/ethyl acetate=10/1) gave a mixture of

Scheme 1. Proposed catalytic cycle.

Table 1. Rhodium-catalyzed addition of silylacetylenes.[a]

Entry Alkyne 1 Alkyne 2 Time [h] Yield [%][b] 3/4[c]

1 1b 2m 1 90 97/3
2 1c 2m 2 95 95/5
3 1d 2m 2 92 98/2
4[d] 1d 2m 3 87 98/2
5[e] 1e 2m 4 93 94/6
6[e,f] 1f 2m 12 80 93/7
7[e] 1e 2n 4 92 98/2
8[e] 1e 2o 4 96 98/2

[a] Reaction conditions: [Rh(OH)((R)-binap)]2 (5) (5 mol%
of Rh), internal alkyne 1 (0.20 mmol), terminal alkyne 2
(0.30 mmol), 1,4-dioxane (0.4 mL) at 40 8C.

[b] Isolated yields of 3 and 4.
[c] Determined by 1H NMR.
[d] The reaction was conducted in 2.0 mmol scale with

[Rh(OH)((R)-binap)]2 (5) (2 mol% of Rh) at 80 8C.
[e] Performed at 60 8C.
[f] Alkyne 2m (0.4 mmol) was used.
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3am and 4am (3am/4am=96/4) as a colorless oil ; yield:
75.3 mg (0.19 mmol, 94%).
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