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ABSTRACT: The functionalization of unactivated C-
(sp®)—H bonds poses a significant challenge due to their
ubiquity and relative similarity in most organic frame-
works. Herein, we describe the use of a combined
photoredox and nickel catalytic system for the regiose-
lective C(sp*)—C(sp*) coupling of unactivated C(sp>)—H
bonds and alkyl bromides. Positional selectivity is dictated
by a 1,5-hydrogen atom transfer (HAT) reaction by a
pendent amide. Interception of this radical by a Ni catalyst
allows distal alkylation to occur in good yield and
excellent selectivity.

he ubiquity of C—H bonds decorating organic molecules

presents itself as the ultimate handle of chemical
diversification. The ability to selectively and efficiently
manipulate these C—H functionalities can greatly expedite
and simplify synthetic routes through a greater diversity of
potential bond disconnections. However, this ubiquity also
poses a considerable selectivity challenge, as the differentiation
between unbiased reactive sites can be marginal to largely
indistinguishable." Metal-catalyzed C—H activation has revo-
lutionized our ability to quickly generate molecular complexity
through the installment of new C—C, C—0O, C—N, and C-X
bonds.” While metal-catalyzed C—H activation has thrived on
the functionalization of C(sp*)—H bonds, the selective
functionalization of C(sp’)—H bonds poses an ongoing
challenge.”

Techniques involving hydrogen atom transfer (HAT) have
proven useful for the functionalization of intrinsically weak
C(sp®)—H bonds (Scheme 1).* Photoredox strategies that
facilitate the generation of radical intermediates capable of
HAT have expedited the growth of these avenues.” However,
these radical intermediates target the weakest C—H bond in
solution capable of a polarity matched transition state, which
typically lie @ to an existing functionality or heteroatom. In the
absence of electronic positional bias, functionalization through
these methods often occurs indiscriminately at chemically
indistinguishable sites.” The coupling of a transition metal with
these strategies has broadly expanded the breadth of bond
disconnections through single-electron transmetalation.” This
merger has culminated in the ability to cross-couple alkyl
radicals generated from C—H bonds with metal-activated
electrophiles to forge new C(sp3)—C(sp2) and C(5p3)—C(sp3)
bonds.” Recent methodology has extended this reactivity to
unactivated positions, although it requires a large excess of
substrate and may generate mixtures of regioisomers.’
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Scheme 1. Inspiration for the Development for the
Regioselective Alkylation of C(sp*)—H bonds: (A)
Selectivity Challenges Present in the Functionalization of
C—H Bonds in Organic Molecules; (B) Prior Art of
Photoredox-Enabled HAT Strategies for the
Functionalization of C(sp*)—H Bonds in Comparison to
This Work
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Our group and the Knowles group has previously
demonstrated selective functionalization of distal C(sp®) sites
with new C—C bonds through a 1,5-HAT strategy through a
photoredox-catalyzed oxidation of a pendent amide moiety.'’
The remote carbon radical, generated through a six-membered
transition state, is sufficiently long-lived to trap exogenous
Michael acceptors to furnish a J-functionalized amide. This
strategy showcases the ability to regioselectively monofunc-
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tionalize an unactivated distal methine or methylene in the
presence of more electronically or sterically activated C—H
bonds.

We sought to unify the selectivity imparted through 1,5-
HAT with the versatility offered through nickel catalysis to
selectively alkylate distal bonds. In doing so, one of numerous
otherwise indistinguishable methylene sites can be coupled
selectively to the wealth of commercially available or easily
accessible alkyl bromides.

We first examined whether the distal alkyl radical generated
through 1,5-HAT could be captured by a metal catalyst. Due to
the well-established ability of nickel bipyridine complexes to
participate in metallophotoredox cross-couplings,11 we chose
to screen these species in conjunction with our previously
established methods'** for forming a distal alkyl radical (Table
1)."* Alkyl trifluoroacetamides are particularly well-suited to

Table 1. Optimization and Control Studies

%

O Me Ni(glyme)Cl, o  Me

R)LN)I)Me Cph (@, 4-aNelopy RJLN Me
H Br — H
1a 2i K3PO,, MeCN 33
Entry R Source  Deviation from Standard Conditions”  Yield (%)

1 CF, none 79
2 CHF, none 0
3 CF,CF; none 61
4 Ph PC-2, NBu,OP(0)(OBu), 0
N Ph none 0
6 CF, PC-2, NBu,0OP(0)(OBu), 0
7 CF, Without Ni 0
8 CF, Without Ligand 0
9 CF,; Without PC 0
10 CF; Without Light 0
11 CF, Without Base 0

“Optimizations were performed on 0.1 mmol scale using 1a (1 equiv),
2j (2 equiv), Ni source (10 mol %), ligand (12 mol %), base (4
equiv), and PC (1 mol %) over a period of 36 h. PC =
(Ir(dF(CF;)ppy),(dtbbpy) JPF,. PC-2 = [Ir(dF(CF;)ppy),(5,5'-
dCF;bpy)]PF,.

directing the 1,5-HAT in the presence of a sufficiently strong
base. Interestingly, the reaction only proceeds at remote sites
bearing secondary C(sp*)—H bonds (Scheme 2). Other
directing groups which decrease the acidity of the N—H
proton proved unreactive, including when these systems were
run using conditions developed by Knowles'” relying on
proton-coupled electron transfer (PCET; Table 1, entries 4—

Scheme 2. Effect of Substitution at §-Position
Q Ni(glyme)Cl,
TFA A~ R OFt (4 4-dMeopy  TFA. R
H Br 3 H

1 2a KPO4, MeCN 3
M
TFAL,, Me  TFAL € Me TFAL
H/\/X H/\/X H/\/E
3ca 55% 0% 0%

6). Additionally, all of the reactive components are necessary,
as removal of light, the photocatalyst, Ni, ligand, or base all
result in no product formation (Table 1, entries 7—11).

Having established that this strategy effectively forges a new
C—C bond regioselectively at a distal C—H, we examined its
scope. Aliphatic linear amides participate well and are
monofunctionalized at the O&-methylene site (Scheme 3).
Interestingly, even with the generation of a tertiary site at
the J-position, no second cross-coupling occurs at that site,
which differs from the related capture of Michael acceptors.'**
In the case of multiple functionalizable sites, secondary
positions are selectively functionalized in preference over
primary positions, 3fa. In cyclic systems, cross-coupling tends
to occur in a trans relationship, probably due to the preference
of radical capture of the active Ni catalyst on the sterically less
hindered side of the ring (see Supporting Information, p SS).
This allows for alkylation of five- and six-membered ring
systems with high diastereoselectivity. In substrates featuring
more activated C(sp®>)—H bonds in positions other than those
0 to the amide moiety, functionalization occurs solely at the
unactivated, directed site in preference over the weaker, more
reactive C(sp’)—H bonds. This allows for the tolerance of
sulfonamides (3ja), ethers (3ia and 3la), arenes and alkenes
(30a and 3pa), and their adjacent activated C—H bonds, albeit
with occasionally diminished yields.

The scope of the alkyl bromide coupling partner was also
explored (Scheme 4). In nearly all cases, the alkyl halide is
used in excess to the aliphatic amine, as the alkyl bromide is
consumed in a competing reductive homocoupling. This
reductive homocoupling outcompetes desired cross-coupling
in low concentrations of amide, resulting in incomplete
conversion of the amide but complete consumption of the
alkyl bromide. Most aliphatic alkyl bromides, including ethyl,
are tolerated under the reaction conditions (3kb). Other
functionalities, including protected alcohols, 3kf, nitriles, 3kg,
and alkenes, 3kh, also participate well in the reaction.
Interestingly, benzylic bromides are not tolerated, presumably
due to the competing oft-cycle reduction by the photocatalyst
which generates free benzyl radicals. Other heterocycles are
tolerated, including dioxolanes, 3ki, phthalimides, 3kk, and
pyrroles, 3kl. Aryl bromides are tolerated, 3km, as the primary
alkyl bromide is considerably more reactive. Alkyl bromides
bearing electronically diverse arene rings are well tolerated
under the standard conditions (3kj—3ko). Currently, alkyl
bromides are the only productive alkyl halides as chlorides,
iodides, and pseudohalides such as tosylates and triflates are
either unreactive or lead to unproductive byproducts.
Secondary and tertiary alkyl bromides show diminished yields
under the optimized conditions and have thus far only shown
modest levels of synthetic efficiency.'*

Isotopically labeled tags can be easily incorporated under
these conditions allowing for the isotopic differentiation of
otherwise symmetrical groups. The reactivity can also be
performed sequentially when there are more potential
abstraction sites, allowing for the difunctionalization of 2k
with two distinct coupling partners in excellent diastereose-
lectivity. Alternatively, orthogonal reactivity can be performed
to generate quaternary carbon centers through the direct
radical capture of a suitable radicalophile.'* This allows for the
selective, mild generation of a distal quaternary carbon from a
previously unactivated or functionalized methylene site, 4b.

A potential mechanism that accounts for the observed
transformation and regioselectivity is represented by the
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Scheme 3. Reaction Scope (Amides)”
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“Reactions were run on 0.1 mmol scale with 2 equiv of 2a, 10 mol % Ni(glyme)Cl,, 12 mol % 4,4’-dimethyl-2,2'-bipyridine, 1 mol % PC ([Ir(dF-
CF;ppy),dtbbpy]PFy), and 4 equiv of K;PO, in 0.75 mL of MeCN for 36 h. *Product assay purity 93-96% (contains 4%—7% inseparable impurity

of product-derived olefin) (see SI).

catalyst system depicted in Scheme SA. The trifluoroacetamide
directing group, which is sufficiently acidic to be deprotonated
by the phosphate base, is oxidized by an excited-state
photocatalyst to generate a neutral amidyl radical, V. This
amidyl radical can then abstract a hydrogen atom in a 1,5-HAT
fashion from the &-methylene to afford a carbon-centered
radical at the distal position, VI. Meanwhile, a low-valent nickel
complex, I, can oxidatively insert into the alkyl bromide to
generate a Ni'" alkyl species, IL. This Ni'" can be reduced to a
Ni" species by the reduced-state photocatalyst which can then
trap the distal carbon radical to afford a transient Ni', VII,
which undergoes reductive elimination to afford the newly
formed C—C bond and regenerate a catalytically active Ni'.

It should be noted that this reaction proceeds when using
either Ni(cod), or Ni(glyme)Cl, as the precatalyst. When
using a Ni'' precatalyst, as in the optimized conditions, a
reduction of the catalyst to a low valent Ni species is likely
required before entering the catalytic cycle. In the cases where
a Ni’ catalyst is used, an increased amount of reductively
homocoupled alkyl bromide is observed, which likely helps
generate the necessary Ni.'?

One perplexing caveat of the reactivity exhibited by the 1,5
HAT /Nickel cross-coupling is the lack of observed reactivity at
tertiary positions, especially considering that these positions
exhibit a multitude of functionalization methods through 1,5-
HAT strategies.”> This lack of reactivity also mirrors that of the
more sterically demanding alkyl bromides, as the presumably
more sterically encumbered Ni active species demonstrates
diminished catalytic efficiency. Despite screening a number of

ligands, none produced a cross-coupled product in either set of
conditions.

In order to more thoroughly probe the fate of the tertiary
radical, several mechanistic studies were performed (Scheme
5). We tested this hypothesis through deuterium labeling of
the amidyl N—H and conducting the reaction in deuterated
solvent to ensure that any alkyl radical abstraction or reversible
1,5-HAT would incorporate deuterium into the product. The
absence of deuterium in the product demonstrates that C—C
bond formation is diastereoselective rather than a result of
epimerization to the more stable diastereomer after alkylation.
Due to the low reactivity of tertiary reactive sites, we
hypothesize that the reductive elimination of the tertiary
alkyl group to generate a quaternary carbon is relatively slow
(Scheme SC). Instead, it is possible that the long-lived Ni™
intermediate could in turn be reduced by the photocatalyst and
undergo elimination to generate Ni’ and an alkene.'® Olefinic
products are observed with more sluggish substrates which
supports the likelihood of this pathway. This was further
corroborated by the fact that a variety of olefinic products,
primarily the 6—e alkene, are observed when utilizing substrate
1p. This reactivity of the generated tertiary position enables
the formation of unsaturated elimination products that remain
as inseparable impurities in some isolated products. Deutera-
tion of the activated position (lc-d;) results in the
conservation of the second deuteron in the alkylated product.
This indicates that if 1,5-DAT occurs on the generated tertiary
center then the process is reversible through either a retro-1,5-
DAT or a Ni mediated delivery of a hydrogen atom to the alkyl
radical through metalation, reduction, and protonation. It
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B. Sequential Functionalization: EtO
Br

2k0_> (¢}
Q 2a

N :
H ! TFA ~ /\\\\\
CHy E /\):; E‘OJ\/\’Br :
D7>cp, ; standard standard 4a 45%

Me

conditions conditions > 20:1 dr

Me Me O

TFA .
Me 2j PC N OEt
TFA )\/\/\
°N Me K3PO4, MeCN
H 1a standard conditions 3aj 63%* ethyl acrylate 4b 61%

“Reactions were run on 0.1 mmol scale with 2 equiv of alkyl bromide, 10 mol % Ni(glyme)Cl,, 12 mol % 4,4'-dimethyl-2,2’-bipyridine, 1 mol % PC
([Ir(dF-CF;ppy),dtbbpy]PF¢), and 4 equiv of K;PO, in 0.75 mL of MeCN for 36 h. (A) Deuterotopically labeled alkyl bromides can be utilized to
incorporate deuterated fragments into substrates otherwise lacking reactive handles. (B) Sequential functionalization is available through this
reactivity, as symmetrical reactive sites can be functionalized without degradation of diasteroselectivity. The reactivity can also be paired with prior
disclosed methods to effectively furnish quaternary sites. *Product assay purity 95-98% (contains 2-5% inseparable impurity of product-derived
olefin) (see SI).

seems likely, therefore, that the 1,5-abstraction and Ni capture HAT and nickel cross-coupling strategy. This allows for the

may occur in the case of J-methines, but then results in broad diversification of possible synthetic building blocks that

elimination upon reduction or other unproductive side . . . .
can be selectively incorporated at an unactivated distal

reactions.
We have demonstrated functionalization of distal unac- methylene site. Studies indicate that this coupling is selective
tivated C(sp®)—H bonds through a photoredox mediated 1,5- for monoalkylation, resulting in distal tertiary carbon centers.
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Scheme 5. Mechanistic Insights into the Distal C—H Alkylation: (A) Potential Mechanism; (B) Deuteration Studies and
Reactivity with Tertiary Substrates; (C) A Proposed Reaction Pathway Describing the Fate of Tertiary Nickel Intermediates in
Which Slow Reductive Elimination Allows for Competing Substrate Oxidation
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