Tetrahedron Letters 52 (2011) 4662-4664

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Practical β-masked formylation and acetylation of electron-deficient olefins utilizing tetra(*n*-butyl)ammonium peroxydisulfate

Jae Chul Jung^a, Yong Hae Kim^{a,*}, Kieseung Lee^{b,*}

^a Department of Chemistry, Korea Advanced Institute of Science & Technology, Daejon 305-701, Republic of Korea ^b Department of Applied Chemistry, Woosuk University, Chonbuk 565-701, Republic of Korea

ARTICLE INFO

ABSTRACT

Article history: Received 27 June 2011 Accepted 30 June 2011 Available online 8 July 2011

Keywords: Electron-deficient olefins Formylation Acetylation 1,4-Diketone Peroxydisulfate Various electron-deficient olefins reacted readily with 1,3-dioxolane or 2-methyl-1,3-dioxolane in the presence of TBAP to afford the corresponding 1,3-dioxolanylated or 2-methyl-1,3-dioxolanylated products in a complete regioselective manner in good to excellent yields. © 2011 Elsevier Ltd. All rights reserved.

Carbon–carbon bond formation via radical addition to alkenes is one of the most important synthetic methodologies in the construction of organic molecules. In such radical addition reactions, it is the key point that the adduct radicals should be trapped by a donor subsequent to the C–C bond formation in order to prevent radical polymerization. Organotin and organomercury hydride have been utilized for such a task.¹

Regioselective β -masked formylation of electron-deficient olefins is a very important and useful reaction. In the addition of 2-lithio-1,3-dithiane to α , β -unsaturated carbonyl compounds, the ratio of 1,2- and 1,4-addition was remarkably dependent upon the reaction system with the predominant formation of 1,2-addition products.² 1,3-Dioxolanylation at electron-deficient olefins is synthetically equivalent to formylation since 1,3-dioxolane unit can be readily converted to the aldehyde group selectively under various reaction conditions.³ A few groups reported that 1,3-dioxolanyl radical generated by photo-irradiation added to electron-deficient olefins to give the insufficient results of 1,3-dioxolanylated products.⁴ Therefore, highly regioselective 1,3-dioxolanylation at the β -position of electron-deficient olefins has been desired.

Previously we have described the synthesis of tetra (n-butyl)ammonium peroxydisulfate (TBAP), a new type of peroxydisulfate soluble in organic solvents, by introducing tetra(n-butyl)ammonium moiety as a cation.^{5d} By utilizing TBAP as the key reagent in organic solvent, we have developed useful organic reactions, for example, iodination of electron-deficient olefins,^{5a} epoxidation of α , β -unsaturated ketones,^{5b} tetrahydropyranylation of alcohols,^{5c} and tetrahydrofuranylation.^{5d}

In continuation of our research on utilizing TBAP for useful organic reactions, we have recently found that electron-deficient olefins (1) react readily with 1,3-dioxolane in the presence of TBAP (2) at 25 °C to afford 1,3-dioxolanylated products (3) in a complete regioselective manner in good to excellent yields (Table 1).⁶

Practical and efficient 1,3-dioxolanylation of α , β -unsaturated carboxylates (runs 1–4), cycloalkenones (runs 5–7), and sulfone (run 8) can be successfully carried out in 1,3-dioxolane used as a solvent and the reagent in the presence of TBAP (2 equiv) at 25 °C under Ar. After the complete 1,3-dioxolanylation reaction, tetra(*n*-butyl)ammonium sulfonic acid, a byproduct derived from TBAP, was isolated and identified.

In connection with this novel reaction, we have also examined the addition of 2-methyl-1,3-dioxolan-2-yl radical to electron-deficient olefins since the 2-methyl-1,3-dioxolanylation reaction^{4a,7} is equivalent to acetylation at the β -position of electron-deficient olefins (Table 2).⁸

For the 2-methyl-1,3-dioxolanylation reaction, 1,2-dichloroethane was used as a solvent together with a excess amount of 2-methyl-1,3-dioxolane in the presence of TBAP (2.0 equiv). Higher reaction temperature (70 °C) compared with 25 °C of the 1,3dioxolanylation reaction was required to complete the reaction most probably due to the steric hindrance of 2-methyl group of 2-methyl-1,3-dioxolane. This reaction is particularly noteworthy since the 1,4-dioxo compounds⁹ are known to be valuable

^{*} Corresponding authors. Tel.: +82 42 350 2818; fax: +82 42 350 2810 (Y.H.K.). E-mail addresses: kyh@kaist.ac.kr (Y.H. Kim), kslee@woosuk.ac.kr (K. Lee).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.06.116

Table 1

β-(1,3-Dioxolanylation) of electron-deficient olefins

^a Isolated yield after flash column chromatography.

precursors for the synthesis of cyclopentanoids and furanoids,¹⁰ heteroaromatics,¹¹ and also bioactive natural products such as *cis*-jasmone, rethrolones, and prostaglandin B₂.¹²

In summary, we have shown that various types of electron-deficient olefins reacted readily with 1,3-dioxolane or 2-methyl-1,3dioxlane in the presence of TBAP to provide the corresponding 1,3-dioxolanylated or 2-methyl-1,3-dioxolanylated products, formylation or acetylation equivalents, in a complete regioselective way in good to excellent yields. These novel 1,4-addition reactions are practically useful for the synthesis of formyl and acetyl functional groups which could play a commanding role in the construction of complex molecular architecture. Further studies to determine the scope and the reaction mechanism are actively going on, and the results will be reported in due course.

Acknowledgments

This work was supported by Korean Science & Engineering Foundation. Lee, K. gratefully acknowledges the financial support from the Program of Regional Innovation Center at Woosuk University which was conducted by the Ministry of Knowledge Economy of the Korean Government.

References and notes

- (a) Curran, D. P. Synthesis 1988, 417, 489; (b) Giese, B. Angew. Chem., Int. Ed. Engl. 1985, 24, 553.
- (a) Bottegi, C.; Soccolini, F. Synthesis 1985, 592; (b) El-Bouz, M.; Wartsk, L. Tetrahedron Lett. 1980, 21, 2897.
- 3. Ji, H.-B. Eur. J. Org. Chem. 2003, 3659. Other important references cited therein.

Table 2

β-(2-Methyl-1,3-dioxolanylation) of electron-deficient olefins

^a Isolated yield after flash column chromatography.

- (a) Campari, G.; Fagnoni, M.; Mella, M.; Albini, A. Tetrahedron: Asymmetry 2000, 11, 1891; (b) Manfrotto, C.; Mella, M.; Freccero, M.; Fagnoni, M.; Albini, A. J. Org. Chem. 1999, 64, 5024; (c) Mase, N.; Watanabe, Y.; Toru, T. Bull. Chem. Soc. Jpn. 1998, 71, 2957; (d) Inomata, K.; Suhara, H.; Kinoshita, H. Chem. Lett. 1988, 813; (e) Matsukawa, M.; Inanaga, J.; Yamaguchi, M. Tetrahedron Lett. 1987, 28, 5877; (f) Giordano, C.; Minisci, F.; Vismara, F.; Levi, S. J. Org. Chem. 1986, 51, 536; (g) Watanabe, Y.; Tsuji, Y.; Takeuchi, R. Bull. Chem. Soc. Jpn. 1983, 56, 1428.
- (a) Hwang, J. P.; Yang, S. G.; Kim, Y. H. J. Chem. Soc., Chem. Commun. 1997, 1335;
 (b) Kim, Y. H.; Hwang, J. P.; Yang, S. G. Tetrahedron Lett. 1997, 38, 3009; (c) Choi, H. C.; Cho, K. I.; Kim, Y. H. Synlett 1995, 207; (d) Jung, J. C.; Choi, H. C.; Kim, Y. H. Tetrahedron Lett. 1993, 34, 3581.
- 6. Typical experimental procedure: Dimethyl maleate (72.1 mg, 0.50 mmol) and TBAP (677.0 mg, 1.0 mmol) were added to dry 1,3-dioxolane (5 mL), and the reaction mixture was stirred at 25 °C for 1.5 h under Ar. The reaction mixture was concentrated to give a viscous oil which was diluted with H₂O (5 mL), then extracted with CH₂Cl₂ (10 mL × 3). The combined organic layers were dried over anhyd MgSO₄, filtered and concentrated to give an oily residue which was flash chromatographed (SiO₂, Et₂O/hexane = 1:3) to afford pure dimethyl 2-(1,3-dioxolan-2-yl)butanedioate (106.9 mg, 98%). IR (NaCl, neat) 1737, 1187, 1023, 946 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.63 (dd, 1H, -CHCHH-, J₁ = 17.1 Hz, J₂ = 4.9 Hz), 2.80 (dd, 1H, -CHCHH-, J₁ = 17.1 Hz, J₂ = 9.3 Hz), 3.25 (br q, 1H, -CHCH₂-), 3.68 (s, 3H, -OCH₃), 3.75 (s, 3H, -OCH₃), 3.85-4.01 (m, 4H, -CH₂CH₂-), 5.19 (d, 1H, -CHCH-, J = 4.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 2.9.90, 45.54, 51.74, 52.16, 65.24, 102.60, 102.62, 171.28, 172.25, MS (El) m/z (rel. intensity %) 99 (11), 73 (100), 59 (27), 55 (38), 45 (48).
- 7. Mosca, R.; Fagnoni, M.; Mella, M.; Albini, A. Tetrahedron 2001, 57, 10319.
- 8. Typical experimental procedure: A mixture of methyl crotonate (50.1 mg, 0.50 mmol), TBAP (677.0 mg, 1.0 mmol) and 2-methyl-1,3-dioxolane (881.1 mg, 10.0 mmol) in anhyd dichloroethane (2 mL) was heated at 70 °C for 2.5 h under Ar. The reaction mixture was concentrated to give a viscous oil which was diluted with saturated aqueous NaHCO₃ (1 mL) and distilled H₂O (10 mL). The product was extracted with Et₂O (10 mL × 3), and the combined organic layers were dried over anhyd MgSO₄, filtered and concentrated. The oily residue was purified by flash chromatography on SiO₂ (Et₂O/hexane = 1:3) to afford methyl 3-(2-methyl-1,3-dioxolan-2-yl)butanoate (93.0 mg, 99 %). IR (NaCl, neat) 1733, 1195, 1160, 1051, 951 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 102 (d, 3H, CH₃CH-, J = 6.8 Hz), 1.27 (s, 3H, CH₃C-), 2.09 (dd, 1H, -CHCHH-, J₁ = 15.1 Hz, J₂ = 8.3 Hz), 2.27-2.37 (m, 1H, -CHCH₂-), 2.57 (dd, 1H, -CHCHH-, J₁ = 15.1 Hz, J₂ = 5.4 Hz), 3.67 (s, 3H, -CO₂CH₃), 3.87-4.01 (m, 4H, -CH₂CH₂-);

¹³C NMR (CDCl₃, 100 MHz) δ 15.49, 20.56, 36.76, 38.48, 51.49, 64.64, 64.72, 111.28, 173.74; MS (El) *m/z* (rel. intensity %) 87 (100), 59 (4), 43 (45).
 Werner, K. M.; de los Santos, J. M.; Weinreb, S. M.; Shang, M. J. Org. Chem. **1999**,

- 64, 4865.
- 10. Trost, B. M. Chem. Soc. Rev. **1982**, 11, 141.

- Ballini, R.; Bartoli, G. Synthesis **1993**, 965.
 (a) Ellison, R. A.; Woessner, W. D. J. Chem. Soc., Chem. Commun. **1972**, 529; (b) McMurray, J. E.; Melton, J. J. Am. Chem. Soc. **1971**, 93, 5309; (c) Ficini, J.; d'Angelo, J.; Genet, J. N.; Noire, J. Tetrahedron Lett. **1971**, 1569; (d) Stork, G.; Borch, R. J. Am. Chem. Soc. **1964**, 86, 935.