Note

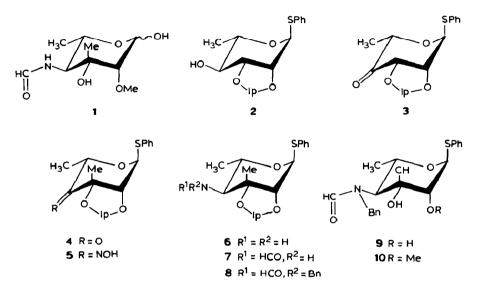
Synthesis of phenyl 4-(*N*-benzylformamido)-4,6-dideoxy-3-*C*-methyl-2-*O*-methyl-1-thio- α -L-mannopyranoside, an *N*-formylkansosamine glycosyl donor^{*}

István Bajza and András Lipták[†]

Institute of Biochemistry, L. Kossuth University, P.O. Box 55, H-4010 Debrecen (Hungary) (Received January 4th, 1990; accepted for publication, April 18th, 1990)

Recently, 4,6-dideoxy-4-*N*-formamido-3-*C*-methyl-2-*O*-methyl-L-mannose (1), an *N*-substituted derivative of kansosamine, was reported¹ as the non-reducing terminus of the type-specific pentasaccharide determinant of serovariant 14 of the *Mycobacterium avium* complex. Two other naturally occurring derivatives of 4-amino-4,6dideoxy-3-*C*-methyl-L-mannose have been reported, namely *N*-(*R*)-2-methoxypropanokansosamine {4,6-dideoxy-4-[(*R*)-2-methoxypropionamido]-3-*C*-methyl-2-*O*-methyl-L-mannopyranose} from *Mycobacterium kansasii*^{2,3} and L-sibirosamine (4,6-dideoxy-3-*C*-methyl-4-methylamino-L-mannopyranose) from *Streptosporangium sibiricum*^{4,5}.

In connection with the synthesis of the pentasaccharide antigen of serovariant 14 of the M. avium complex, we now report the title compound, which is a C-1-activated derivative (10) of N-formylkansosamine.


Oxidation of phenyl 6-deoxy-2,3-O-isopropylidene-1-thio- α -L-mannopyranoside⁶ (2) by pyridinium chlorochromate in dichloromethane gave 70% of the ulose 3, but no sulphoxide or sulphone. Generation of the carbanion of 3 was achieved with lithium di-isopropylamide and treatment with methyl iodide proceeded with low stereoselectivity, and only 56% of the desired axial 3-C-methyl derivative 4 could be isolated. Treatment of 4 with 10 equiv. of hydroxylamine hydrochloride-sodium carbonate in ethanol at 90° afforded 60% of the oxime 5, reduction of which with 10 equiv. of lithium aluminium hydride in oxolane gave a ~1:1 mixture of the L-manno (6) and L-talo amines. Only 6 was isolated (30%) and was treated in dichloromethane with carbodiimide-formic acid to yield 7 (70%). The proton of the formyl group resonated at 8.04 and 8.24 p.p.m., reflecting the two environments caused by hindered rotation around the formyl C-N bond. Removal of the isopropylidene group from 7 gave a diol, attempted selective methylation of which resulted in both O- and N-methylation.

^{*} Dedicated to Professor Leslie Hough in the year of his 65th birthday.

[†] Author for correspondence.

Therefore, 7 was N-benzylated to give 8 (70%), the isopropylidene group of which was hydrolysed in aqueous 70% acetic acid at 80° to give 9 (80%). Methylation of the diol 9 then gave the title compound 10 (66%), but a di-O-methylated minor component could also be detected by t.l.c.

Compound 10 (after protection of the free OH group) can be activated by different thiophilic reagents (*e.g.*, benzeneselenyl triflate⁷, methyl triflate⁸, dimethyl (methylthio)sulfonium triflate⁹) and used as a glycosyl donor.

EXPERIMENTAL

General. — Solutions were concentrated at 40° (bath)/~15 Torr. Chromatography was performed on Kieselgel 60. Optical rotations were measured with a Perkin– Elmer 241 automatic polarimeter and i.r. spectra with a Perkin–Elmer 283B spectrophotometer. The ¹H-(200 MHz) and ¹³C-n.m.r. (50.3 MHz) spectra were recorded with a Bruker WP-200 SY spectrometer for solutions in CDCl₃ (internal Me₄Si). Melting points are uncorrected.

Phenyl 6-deoxy-2,3-O-isopropylidene-1-thio-α-L-lyxo-hexopyranosid-4-ulose (3). — To a solution of phenyl 6-deoxy-2,3-O-isopropylidene-1-thio-α-L-mannopyranoside⁶ (2; 4.6 g, 16 mmol) in dichloromethane (400 mL) was added pyridinium chlorochromate (16.8 g, 77 mmol). The mixture was stirred for 2 h at room temperature and worked-up conventionally. Short column chromatography (hexane–ethyl acetate, 7:3) afforded 3 as a colourless syrup (3.3 g, 72%), $[\alpha]_D - 216^\circ$ (c 0.2, chloroform); v_{max} 1740 cm⁻¹ (C=O). ¹H-N.m.r. data: δ 7.40 (m, 5 H, Ph), 5.70 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-1), 4.72 (d, 1 H, $J_{5,6}$ 6.5 Hz, H-5), 4.68 (dd, 1 H, $J_{1,2}$ 1.5, $J_{2,3}$ 6 Hz, H-2), 4.50 (d, 1 H, $J_{2,3}$ 6 Hz, H-3), 1.48 and 1.40 (2 s, each 3 H, CMe₂), 1.34 (d, 3 H, $J_{5,6}$ 6.5 Hz, Me-5).

Phenyl 6-deoxy-2,3-O-isopropylidene-3-C-methyl-1-thio- α -L-lyxo-hexopyranosid-4-ulose (4). — A solution of 3 (353 mg, 1.2 mmol) in oxolane was added to a solution of lithium di-isopropylamide (1.2 mmol) in oxolane at -76° . The mixture was stirred for 1 h at -76° , then hexamethylphosphoric triamide (333 µL) and MeI (500 µL, 8 mmol) were added. After 5 h, an aqueous 10% solution (2 mL) of NH₄Cl was added, and the mixture was diluted with dichloromethane, extracted with water (2 × 20 mL), dried (MgSO₄), and concentrated *in vacuo*. Chromatography (hexane–ethyl acetate, 9:1) of the residue gave 4 (209 mg, 56%) as a colourless syrup, $[\alpha]_D - 200^{\circ}$ (c 0.3, chloroform); ν_{max} 1750 cm⁻¹ (C = O). ¹H-N.m.r. data: δ 7.40 (m, 5 H, Ph), 5.73 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-1), 4.83 (d, 1 H, $J_{5,6}$ 6.7 Hz, H-5), 4.32 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-2), 1.57 (s, 3 H, CMe), 1.41 (b s, 6 H, CMe and Me-3), 1.35 (d, 3 H, $J_{5,6}$ 6.7 Hz, Me-5).

Phenyl 6-deoxy-2,3-O-isopropylidene-3-C-methyl-1-thio-α-L-lyxo-hexopyranosid-4-ulose oxime (5). — A mixture of 4 (1.5 g, 4.9 mmol), hydroxylamine hydrochloride (1.5 g, 21 mmol), Na₂CO₃ (2.6 g, 25 mmol), and ethanol (100 mL) was boiled under reflux for 20 h, then filtered, and concentrated. Column chromatography (toluene-ethyl acetate, 97:3) of the residue gave 5 (900 mg, 64%), m.p. 112°, $[\alpha]_D$ – 315° (*c* 0.4, chloroform); v_{max} 3280 (OH), 1655 cm⁻¹ (C=N). ¹H-N.m.r. data: δ 8.62 (s, 1 H, oxime OH), 7.40 (b m, 5 H, Ph), 5.46 (s, 1 H, H-1), 5.20 (d, 1 H, J_{5,6} 6.5 Hz, H-5), 4.23 (s, 1 H, H-2), 1.62 (s, 3 H, Me-3), 1.59 (s, 3 H, CMe), 1.53 (d, 3 H, J_{5,6} 6.5 Hz, Me-5), 1.51 (s, 3 H, CMe).

Anal. Calc. for C₁₇H₂₃NO₄S (337.96): C, 60.4; H, 6.9; N, 4.1; S, 9.5. Found: C, 60.3; H, 6.8; N, 4.05; S, 9.45.

Phenyl 4-amino-4,6-dideoxy-2,3-O-isopropylidene-3-C-methyl-1-thio-α-L-mannopyranoside (6). — To a solution of 5 (420 mg, 1.3 mmol) in oxolane (80 mL) was added LiAlH₄ (494 mg, 13 mmol), and the mixture was stirred at 100°. After 4 h, the excess of hydride was decomposed by the consecutive addition of ethyl acetate and aqueous KOH. The organic layer was diluted with dichloromethane, washed with water (2 × 50 mL), dried (MgSO₄), and concentrated *in vacuo*. Column chromatography (hexaneethyl acetate, 9:1) of the residue afforded 6 (126 mg, 30%) as a colourless syrup, $[\alpha]_D$ – 152° (*c* 0.7, chloroform). ¹H-N.m.r. data: δ 7.50 and 7.38 (m, 5 H, Ph), 5.73 (d, 1 H, J_{1,2} 1.2 Hz, H-1), 3.95 (dd, 1 H, J_{4,5} 10, J_{5,6} 6.2 Hz, H-5), 4.06 (d, 1 H, J_{1,2} 1.2 Hz, H-2), 2.91 (d, 1 H, J_{4,5} 10 Hz, H-4), 1.52 and 1.38 (2 s, each 3 H, CMe₂), 1.44 (s, 3 H, Me-3), 1.51 (s, 2 H, NH₂) 1.24 (d, 3 H, J_{5,6} 6.2 Hz, Me-5).

Phenyl 4,6-dideoxy-4-formamido-2,3-O-isopropylidene-3-C-methyl-1-thio-α-Lmannopyranoside (7). — To a stirred solution of **6** (236 mg, 0.76 mmol) and 1-(3dimethylaminopropyl)-3-ethylcarbodi-imide (161 mg, 0.84 mmol) in dichloromethane (20 mL) was added formic acid (40 μ L, 0.84 mmol) dropwise at room temperature. After 2 h, the mixture was diluted with dichloromethane, washed with aqueous NaHCO₃ (25 mL) and water (2 × 25 mL), dried (MgSO₄), and concentrated *in vacuo*. Chromatography (toluene–ethyl acetate, 7:3) of the product gave 7 (178 mg, 70%) as a colourless syrup, [α]_D – 185° (c 0.3, chloroform). ¹H-N.m.r. data: δ 8.04 (d, 0.5 H, J_{formyl H,NH} 10 Hz, formyl H), 8.24 (d, 0.5 H, J_{formyl H,NH} 2 Hz, formyl H), 7.29–7.45 (m, 5 H, Ph), 6.20 (b d, 0.5 H, J_{NH,4} 10.5 Hz, NH), 6.42 (b d, 0.5 H, J_{NH,formyl} 10 Hz, NH), 5.77, 5.75 (2 s, 1 H, H-1), 4.37 (t, 0.5 H, J_{4,5} 10, J_{4,NH} 10 Hz, H-4), 3.37 (dd, 0.5 H, J_{4,5} 10, J_{4,NH} 10.5 Hz, H-4), 4.20, 3.95 (2 dd, 1 H, J_{4,5} 10, J_{5,6} 6.2 Hz, H-5), 4.12, 4.08 (2 s, 1 H, H-2), 1.60 – 1.35 (s, 9 H, Me-3 and CMe₂), 1.23 1.21 (2 d, 3 H, J₅₆ 6.2 Hz, Me-5). Phenyl 4- (N-benzylformamido)-4,6-dideoxy-2,3-O-isopropylidene-3-C-methyl-1thio-α-L-mannopyranoside (8). — Compound 7 (110 mg, 0.33 mmol) was treated with NaH (20 mg, 0.66 mmol) in N,N-dimethylformamide for 1 h at room temperature, then benzyl bromide (78 µL, 0.66 mmol) was added. After 20 min, methanol was added to decompose the excess of the hydride, and the mixture was concentrated *in vacuo*. Column chromatography (hexane–ethyl acetate, 85:15) of the residue gave 8 (98 mg, 70%) as a colourless syrup, $[\alpha]_D - 135^\circ$ (c 0.5, chloroform). ¹H-N.m.r. data: δ 8.33 and 8.30 (2 s, formyl H), 7.30 (m, 10 H, 2 Ph), 5.50 and 5.41 (2 d, $J_{1,2}$ 2 Hz, H-1), 4.60 and 4.40 (2 H, PhC H_2), 4.45 and 3.90 (2 dd, 1 H, $J_{4,5}$ 10, $J_{5,6}$ 6 Hz, H-5), 3.80 (d, 1 H, $J_{1,2}$ 2 Hz, H-2), 3.42 and 2.90 (2 d, 1 H, $J_{4,5}$ 10 Hz, H-4), 1.50 and 1.45 (2 s, Me-3), 1.48, 1.45, 1.38, 1.35 (4 s, CMe₂), 1.20 and 1.19 (2 d, $J_{5,6}$ 6 Hz, Me-5).

Phenyl 4-(N-benzylformamido)-4,6-dideoxy-3-C-methyl-1-thio-α-L-mannopyranoside (9). — Compound 8 (90 mg, 0.21 mmol) was treated with aqueous 70% acetic acid (20 mL) for 7.5 h at 80°. The mixture was concentrated, and column chromatography (chloroform-methanol, 97:3) of the residue gave 9 (64 mg, 80%) as a colourless syrup, $[\alpha]_D - 147^\circ$ (c 0.5, chloroform). ¹H-N.m.r. data: δ 8.33 and 8.13 (2 s, 1 H, formyl H), 7.40 and 7.32 (b m, 10 H, Ph), 5.47 and 5.41 (2 d, 1 H, $J_{1,2}$ 2 Hz, H-1), 4.62 and 4.47 (2 d, 1 H, PhCH₂), 4.44 (dd, 1 H, $J_{4,5}$ 10, $J_{5,6}$ 6 Hz, H-5), 4.09 and 3.63 (b s, 1 H, OH), 3.84 (d, 1 H, $J_{1,2}$ 2 Hz, H-2), 3.40 (d, 1 H, $J_{4,5}$ 10 Hz, H-4), 1.51 and 1.45 (2 s, 3 H, Me-3), 0.82 (d, 3 H, $J_{5,6}$ 6 Hz, Me-5).

Phenyl 4-(N-benzylformamido)-4,6-dideoxy-3-C-methyl-2-O-methyl-1-thio-a-Lmannopyranoside (10). — Compound 9 (50 mg, 0.13 mmol) was treated with NaH (5 mg, 0.17 mmol) in N,N-dimethylformamide (10 mL) for 30 min at room temperature, then MeI (40 μ L, 0.65 mmol) was added. After 5 min, methanol was added (5 mL) to decompose the excess of the hydride, and the mixture was concentrated in vacuo. A solution of the crude product in dichloromethane was washed with water $(2 \times 10 \text{ mL})$, dried (MgSO₄), and concentrated in vacuo. Column chromatography (hexane-ethyl acetate, 7:3) of the residue gave 10 (34 mg, 66%), $[\alpha]_D - 99^\circ$ (c 0.79, chloroform). N.m.r. data: 1 H, δ 8.40 (s, 0.33 H, formyl H), 8.18 (s, 0.67 H, formyl H), 7.30 and 7.45 (2 m, 10 H, 2 Ph), 5.55 (d, 0.67 H, J_{1.2} 1.1 Hz, H-1), 5.51 (d, 0.33 H, J_{1.2} 1.5 Hz, H-1), 4.70 and 4.52 (2d, 2H, PhCH₂), 4.48 (dd, 1H, J₄₅10.6, J₅₆5.85 Hz, H-5), 4.03 (bd, 1H, OH), 3.49 and 3.48 (2 s, 3 H, OMe), 3.42 (d, 0.67 H, J₁₂ 1.1 Hz, H-2), 3.39 (d, 0.33 H, J₁₂ 1.5 Hz, H-2), 3.26 (d, 1 H, J_{4.5} 10.6 Hz, H-4), 1.55 and 1.48 (2 s, 3 H, Me-3), 0.84 (d, 3 H, J_{5.6} 5.85 Hz, Me-5); ¹³C, δ 162.43 (formyl), 136.61 and 135.04 (phenyl quaternary C), 130-127.2 (aromatic skeleton), 86.75 and 86.49 (C-1), 84.18 and 83.91 (C-2), 72.96 (C-4), 65.95 (C-3), 58.47 and 58.52 (OCH₃), 64.88 (C-5), 31.86 and 29.59 (CH₃), 21.71 and 20.57 (Me-3), 18.24 and 17.47 (Me-6).

ACKNOWLEDGMENTS

We thank Dr. J. Harangi for recording the n.m.r. spectra, and the National Research Foundation for financial support (OTKA 234 to A.L.).

REFERENCES

- 1 M. McNeil, H. Gaylord, and P. J. Brennan, Carbohydr. Res., 177 (1988) 185-198.
- 2 S. W. Hunter, T. Fujiwara, R. L. Murphy, and P. J. Brennan, J. Biol. Chem., 259 (1984) 9729-9734.
- 3 S. W. Hunter, I. Jardine, D. L. Yanagihara, and P. J. Brennan, Biochemistry, 24 (1985) 2798-2805.
- 4 A. S. Mesentsev and V. V. Kuljaeva, Tetrahedron Lett., (1973) 2225-2228.
- 5 K. A. Parker and R. E. Babine, J. Am. Chem. Soc., 104 (1982) 7330-7331.
- 6 A. Lipták, J. Imre, and P. Nánási, Carbohydr. Res., 92 (1981) 154-165.
- 7 Y. Ito and T. Ogawa, Tetrahedron Lett., 29 (1988) 1061-1064.
- 8 H. Lönn, Carbohydr. Res., 139 (1985) 105-113.
- 9 P. Fügedi and P. J. Garegg, Carbohydr. Res., 149 (1986) c9-c12.

٠