Carbon-13 NMR Signals of Some Substituted Indanones, Tetralones and Benzo- α -pyrones, β -Substituted β -Phenylpropionic Acids and Related Compounds

AMARENDRA PATRA (to whom correspondence should be addressed) and SWAPAN K. MISRA Department of Chemistry, University College of Science, Calcutta 700 009, India

¹³C spectral assignments for 3methyl-1-indanone, 3-ethyl-1indanone, 3-n-propyl-1-indanone, 3-phenyl-1-indanone, 3-phenyl-1tetralone, 3- and/or 4-substituted benzo-a-pyrones and dihydrobenzo- α -pyrones, together with those for 3phenylbutyric acid, 3-phenylvaleric acid, 3-phenylcaproic acid, 3,3-diphenylpropanoic acid, 3,4-diphenylbutyric acid, their 2-carboxy derivatives and the ethyl esters of the 2-carbethoxy derivatives are reported.

KEY WORDS Indanones Tetralones Benzoα-pyrones Dihydrobenzo-α-pyrones β-Alkyl-β-phenylpropionic acids Ethyl βalkyl-α-carbethoxy-β-phenylpropionates ¹³C NMR spectral assignments

INTRODUCTION

Carbon-13 spectral assignments of some 3substituted 1-indanones (1-4), 3-phenyl-1tetralone (6), 3- and/or 4-substituted benzo- α pyrones (10, 11, 24-26) and dihydrobenzo- α pyrones (8, 9, 12-23), 3-substituted 3phenylpropionic acids and closely related compounds (28-43), which were derived during our synthetic studies¹⁻⁴ on 3alkylcoumarins and 4-alkylcoumarins, have been carried out.

RESULTS AND DISCUSSION

The 13 C shift assignments of the above compounds are given in Tables 1 and 2. These were made from mutual chemical shift correlations between related compounds, the use of the spectra of suitable models (viz. 5, ⁵ 7 ⁶ and 27 ⁷) and consideration of the chemical shift changes expected for the replacement of an aliphatic hydrogen by a methyl group⁸ and the substituent effect of a carbonyl moiety on the aromatic carbon shifts.⁹

Conclusive carbon shift assignments for 3, 4, 6 and 7 were, however, achieved by appropriate two-dimensional ${}^{13}C{}^{-1}H$ hetero-

8, 9, 12–23, 27

Compounds	R'
1, 12, 19, 29, 34, 39	СН ₃
2, 13, 20, 30, 35, 40	сн ₂ СН ₃
3, 10, 14, 21, 31, 36, 41 }	CH2CH2CH3
4, 6, 11, 32, 37, 42	C₅H₅
5, 7–9, 18, 24–27	н
17, 33, 38, 43	CH₂C ₆ H₅
15, 23	ČH₂ĆH _ ČH₂ ,CH₃
16, 22	сн сн снз

10, 11, 24-26

Reference Data

Table 1. ¹³ C NMR signals (ppm) for compounds	1-27
--	------

Compound	C-2	C-3	C-4	C-4a	C-5	C-6	C-7	C-8	C-8a	C-a	С- <i>β</i>	C-γ
1 ^{a-c}	45.1	32.5	125.0		134.5	127.1	123.1			21.0		
2 ^{ac}	42.4	39.4	125.4		134.3	127.3	123.3			28.5	11.3	
3 ^{ac}	42.9	37.9	125.4		134.4	127.2	123.3			38.2	20.6	13.9
4 ^{a-c}	46.7	44.5	126.7		134.9	127.7	123.3					
5 ^{a⊸c}	36.0	25.6	126.6		134.3	127.0	123.3					
6 ^{a,d}	45.7	40.8	37.3	143.1	128.5	133.5	126.4	126.9	131.9			
7°	39 .0	23.1	29.5	144.3	128.5	133.1	126.4	127.0	132.5			
8	168.1	34.6	34.8	126.8	127.6	124.1	128.1	117.0	151.3	36.7	19.7	13.7
9 ^d	167.2	36.6	40.6	125.7	128.6	124.4	128.2	116.9	151.6			
10	160.8	113.8	155.8	119.2	124.2	124.0	131.4	117.1	153.6	33.5	21.2	13.7
11ª	160.5	115.0	155.5	118.8	126.8	124.0	131.7	117.1	154.0			
12	171.2	34.0	31.4	122.5	127.9°	124.0	127.7°	116.3	151.6	15.1		
13	170.4	40.3	28.5	122.4	127.9	123.9	127.9	116.2	151.4	22.6	10.9	
14	170.7	38.7	29.1	122.4	128.0	124.0	128.0	116.3	151.5	31.7	19.8	13.6
15	169.7	38.3	28.2	122.2	127.8	123.9	127.8	116.0	152.2	33.5	134.0	117.7
16	173.2	46.3	26.1	122.3	127.2	124.0	127.9	116.2	155.6	34.1	22.0	22.0
17 ^d	170.2	40.6	28.0	122.2	128.0	124.1	128.0	116.3	151.5	35.4		
18 ^{f_h}	167.2	46.0	26.9	120.5	127.9	124.4	128.3	116.3	151.1			
19 ^{f_h}	167.4	49.0	34.8	120.9	127.7	124.0	128.1	115.8	151.1	20.2		
20 ^{f-h}	167.0	53.4	32.1	121.3	128.1	124.2	128.2	116.0	151.0	27.1	8.8	
21 ^{f-h}	167.4	53.3	32.7	121.5	128.2	124.4	128.4	116.2	151.0	36.3	17.9	14.2
22 ^{f-h}	169.1	57.1	29.8	121.9	128.2	124.3	128.2	116.1	150.8	32.4	18.3	17.6
23 ^{f-h}	168.9	52.8	32.0	121.0	128.1	124.2	128.0	115.9	150.8	38.0	131.7	119.6
24	165.6	130.9	137.3	119.5	127.0	124.1	130.3	116.3	152.4	23.8	12.1	
25	165.4	135.8	138.3	119.5	127.2	123.8	130.3	116.3	152.4	28.6	21.3	21.3
26	161.0	129.8	138.3	119.5	127.0	124.0	130.3	116.3	153.0	32.7	21.1	13.6
27	168.5	29.1	23.6	122.8	128.1	124.4	128.1	116.8	152.0			

^a C-1 in 1-7 resonated at δ 205.8, 205.9, 206.2, 205.6, 206.2, 197.1 and 198.0, respectively.

^b C-3a in 1–5 resonated at δ 159.6, 158.4, 158.8, 157.7 and 154.9, respectively.

° C-7a in 1-5 resonated at δ 136.2, 136.9, 136.6, 136.7 and 136.9, respectively.

^d Other resonances were at δ 143.2 (C-1'), 126.7 (C-2',6'), 128.5 (C-3',5') and 126.4 (C-4') in **6**; 140.2 (C-1'), 127.4 (C-2',6'), 128.9 (C-3',5') and 127.5 (C-4') in **9**; 135.1 (C-1'), 128.3 (C-2',6'), 128.7 (C-3',5') and 129.5 (C-4') in **11**; 137.8 (C-1'), 129.9 (C-2',6'), 128.5 (C-3',5') and 126.6 (C-4') in 17; 143.6 (C-1'), 127.5 (C-2', 6'), 128.8 (C-3', 5') and 126.8 (C-4') in 4.

Signals are interchangeable. [†]COOEt in 18-23 resonated at δ 164.4, 170.0, 169.4, 169.7, 169.1 and 166.4, respectively.

⁹ OCH₂CH₃ in 18-23 resonated at δ 61.7, 61.4, 61.5, 61.7, 61.6 and 61.6, respectively.

^hOCH₂CH₃ in **18–23** resonated at δ 13.6, 13.2, 13.5, 13.6 and 13.4, respectively.

nuclear correlation experiments¹⁰ (see Table 3). This indirectly allowed the specific assignments of the carbon resonances for 5,5 which were compatible with the assignments made from consideration of the substituent parameters for a carbonyl moiety9 and the spectrum of indane.11

EXPERIMENTAL

The ¹³C (75.47 MHz) NMR spectra of 1-11, 26 and 28-43 were recorded on a Bruker AM 300L spectrometer equipped with an Aspect 3000 computer and an array processor, using the DISNMR program version 870101.1. The compounds were submitted to composite pulse decoupling and DEPT sequences to establish the carbon shifts and the degree of protonation. The spectra were recorded in a 5-mm ¹³C/¹H dual-probe head using CDCl₃

as solvent (DMSO-d₆ for 34-38) and internal lock. The concentration of all solutions was ca. 2-5%. The chemical shifts reported are in δ (ppm) downfield from TMS. CDCl₃ or the DMSO- d_6 signal served as the internal standard in carbon spectral measurements; $\delta_{\text{TMS}} = \delta_{\text{CDCI}_3} + 76.9 \quad \text{ppm} = \delta_{\text{DMSO-}d_6} + 39.6$ ppm. The carbon spectra were recorded with a pulse of ca. 65° flip angle and about a 3 s delay between pulses, and the FIDs were acquired over 200 ppm (230 ppm for 1-7) and 32K data points. The ¹H (80 MHz) and ¹³C (20 MHz) NMR spectra of 12-25 were recorded on a Varian CFT-20 NMR spectrometer using 16K data points and ¹³C multiplicities were determined by the SFORD technique. Two-dimensional X-H correlation (¹³C-¹H) spectra were obtained using the INEPT sequence. The FIDs were acquired over 4096 data points and 17241 Hz for each of 128 values of evolution time.

The second-dimension sweep width was ± 1497 Hz. The raw data were processed using a sine-bell window function in both dimensions in the magnitude mode.

The compounds employed were characterized from their elemental and spectral analyses and have mostly been reported elsewhere.¹⁻³ Treatment of 3-carbethoxy-3,4dihydrocourmarin in t-BuOH with t-BuOK followed by addition of n-PrI, i-PrBr or allyl bromide, as in Ref. 1, yielded⁴ 21, 22 and 23, respectively, in 75-85% yield. Compound 21: viscous oil; ν_{max} (neat), 1770, 1740, 1230, 1140, 755 cm⁻¹; ¹H NMR, 0.99 (3H, t, J = 6.8 Hz, H₃- γ), 1.06 (3H, t, J = 7.2 Hz, OCH₂CH₃), 1.47 (2H, m, H₂-β), 1.94 (2H, m, $H_2-\alpha$), 2.97 and 3.32 (1H each, d, J = 15.2 Hz, H_2 -4), 4.04 (2H, q, J = 7.2 Hz, OCH_2CH_3), 6.98-7.30 (4H, m, Ar-Hs). Compound 22: m.p. 72 °C; ν_{max} (KBr), 1760, 1730, 1220, 1145, 745 cm⁻¹; ¹H NMR, 1.00 (3H, t,

Table 2. ¹³ C NMR signals (ppm) for compounds 28–43												
Compound	C-1	C-2	C-3	C-4	C-5	-coo-	C-1′,1″	C-2′,6′ C-2″,6″	C-3',5' C-3".5"	C-4′,4″	OCH2CH3	OCH₂CH₃
28	166.2	126.3	141.7			163.8	132.8	129.2	128.5	130.2	61.3 61.3	13.6 13.8
29	167.7	59.2	39.9	20.0		168.2	143.1	127.3	128.2	126.6	60.8 61.2	13.5 13.9
30	167.6	58.5	47.1	26.8	11.5	168.3	140.6	128.0	128.2	126.6	60.8 61.2	13.4 13.8
31	167.6	58.7	45.2	35.9	20.0	168.2	140.8	128.0	128.1	126.5	60.7 61.1	13.5 13.8
32	167.5	57.4	51.1			167.5	141.3 141.3	127.7 127.7	128.4 128.4	126.7 126.7	61.3 61.3	13.6 13.6
33	167.6	57.8	47.5	40.6		168.3	139.9 138.8	127.8 127.9	128.4 129.1	126.7 125.9	61.0 61.5	13.5 14.0
34	170.2	59.6	40.0	21.2		170.8	144.7	128.1	129.1	127.3		
35	169.8	58.9	47.1	27.1	12.0	170.6	142.0	128.9	128.8	127.2		
36	169.3	58.7	44.7	35.9	19.9	170.0	142.0	128.3	128.5	126.6		
37	169.8	57.5	51.4			169.8	143.1	129.2	128.4	127.3		
							143.1	129.2	128.4	127.3		
38	169.1	58.1	46.9	39.8		169.9	140.7	128.0	128.7	126.5		
							139.5	127.9	128.9	125.9		
39	178.2	42.5	36.1	21.8			145.4	126.6	128.5	126.4		
40	178.6	41.0	43.4	29.0	11.7		143.5	127.4	128.3	126.4		
41	178.5	41.4	41.5	38.3	20.3		143.8	127.3	128.3	126.4		
42	177.9	40.3	46.5				143.1 143.1	127.5 127.5	128.5 128.5	126.5 126.5		
43	178.3	42.9	43.5	38.3			143.2 139.2	127.4 128.2	128.4 129.2	126.6 126.2		

J = 7.1 Hz, OCH₂CH₃), 1.09 and 1.15 [3H each, d, J = 6.6 Hz, CH(CH₃)₂], 2.48 (1H, q, J = 6.6 Hz, CHMe₂), 3.02 and 3.18 (1H each, d, J = 15.1 Hz, H₂-4), 4.00 (2H, q, J = 7.2Hz, OCH₂CH₃), 6.92-7.20 (4H, m, Ar-Hs). Compound 23: oil; ν_{max} (neat), 1750, 1710, 1225, 900, 750 cm⁻¹; ¹H NMR, 1.01 (3H, t, J = 7.2 Hz, CH₂CH₃), 2.74 (2H, d, J = 7.1Hz, H₂- α), 2.99 and 3.28 (1H each, d. J = 15.8 Hz, H_2 -4), 4.02 (2H, q, J = 7.2 Hz,

OCH₂CH₃), 5.22 (2H, m, H₂-y), 5.74 (1H, m, H-β), 6.94-7.33 (4H, m, Ar-Hs).

Hydrolysis of 21-23 in refluxing 10% ethanolic NaOH, subsequent acidification with dilute HCl and further refluxing as in Ref. 1

Table 3. ¹³C-¹H correlation data for compounds 3, 4, 6, and 7

	Proton(s) s	howing one-bond	correlation ^a	Proton(s) showing long-range correlation ^b					
Carbon	3c.d	4 ^{c.d}	7°	3₫	4 ^d	6 ^d			
C-1				H ₂ -2, H-7	H-3				
C-2	H2-2	H2-2	H2-2	-		H ₂ -4			
C-3	н <u>-</u> 3	н ⁻ 3	H3		H-2',6'	H ₂ -4			
C-3a			-	H-5, H-7	H-5, H-7	-			
C-4	H-4	H-4	H ₂ -4	H-6	H-6				
C-4a			-			H ₂ -4, H-6, H-8			
C-5	H-5	H-5	H-5	H-7	H-7	H₂-4, H-7			
C-6	H-6	H-6	H-6	H-4	H-4	_H-8			
C-7	H-7	H-7	H-7	H-5	H-5	H-5			
C-7a				H-4, H-6	H-4, H-6				
C-8			H-8			H-6			
C-8a						H ₂ -4, H-5, H-7			

^a Optimized for 1/J = 0.0036.

^b Optimized for 1/J = 0.0714.

^c C-α, C-β and C-γ in 3 correlated with H₂-α, H₂-β and H₃-γ, respectively. C-2',6', C-3',5' and C-4' in 4 correlated with H-2',6', H-3',5' and H-4', respectively. ^d ¹H signals are reported in Ref. 3. The resonance positions for H-3 and H₂-β in **3** and H-3 in **2**

* ¹H NMR signals (CDCl₃) for 7: δ 2.13 (2H, m, H₂-3), 2.65 2H, t, J = 6.6 Hz, H₂-2), 2.96 (2H, t, J = 6.1 Hz, H₂-4), 7.24 (1H, br d, J = 7.5 Hz, H-5), 7.29 (1H, br dd, J = 7.8 Hz and 7.5 Hz, H-7), 7.46 (1H, ddd, J = 7.5 Hz, 7.5 Hz and 1.5 Hz, H-6), 8.02 (1H, dd, J = 7.8 Hz and 1.5 Hz, H-8).

Reference Data

gave⁴ 14, 16 and 15, respectively, in 70-80% yield as oils. Compound 14: v_{max} (neat), 1760, 1220, 750 cm⁻¹; ¹H NMR, 0.95 (3H, t, J = 7.2 Hz, H₃- γ), 1.10-1.95 (4H, m, H₂- α and H₂- β), 2.78 (2H, m, H₂-4), 3.98 (1H, m, H-3), 6.90-7.35 (4H, m, Ar-Hs). Compound 15: v_{max} (neat), 1770, 1215, 1140, 910, 750 cm⁻¹; ¹H NMR, 2.20-3.07 (5H, m, H-3, H₂-4, H₂- α), 5.18 (2H, m, H₂- γ), 5.65 (1H, m, H- β), 6.90-7.32 (4H, m, Ar-Hs). Compound 16: v_{max} (neat), 1760, 1215, 740 cm⁻¹; ¹H NMR, 1.01 and 1.05 [3H each, d, J = 7.0 Hz, CH(CH₃)₂], 2.08 (1H, m, CHCHMe₂), 2.61 (1H, q, J = 7.0 Hz, H-3), 2.92 (2H, d, J = 7.0Hz, H₂-4), 6.69-7.22 (4H, m, Ar-Hs).

Dehydrogenation of 15 and 16 with Pd–C (10%) in refluxing diphenyl ether followed by chromatography of the reaction mixture over silica gel as in Ref. 3 furnished⁴ 26¹ and 25, respectively, in 60–65% yield. Compound 25: amorphous; v_{max} (KBr), 1700, 730 cm⁻¹; ¹H NMR, 1.26 [6H, d, J = 6.8 Hz, CH(CH₃)₂],

3.12 (1H, m, CHMe₂), 7.19-7.43 (4H, m, Ar-Hs), 7.44 (1H, s, H-4).

Acknowledgement

Services rendered by the CAS Instrumentation Centre, Department of Chemistry, University of Calcultta, are gratefully acknowledged.

References

- 1. A. K. Mitra, S. K. Misra and A. Patra, Synth. Commun. 10, 915 (1980).
- 2. A. Patra and S. K. Misra, Indian J.
- Chem. 27B, 272 (1988). 3. A. Patra and S. K. Misra, Indian J.
- Chem. 29B, 66 (1990).
- S. K. Misra, PhD Thesis, Calcutta University (1988).
- 5. W. G. Buchanan, M. E. Isabelle and R.

H. Wightman, Org. Magn. Reson. 16, 156 (1981).

- E. Wenkert, B. L. Buckwalter, I. R. Burfitt, M. J. Gašić, H. E. Gottlieb, E. W. Hagaman, F. M. Schell and P. M. Wovkulich, in *Topics in Carbon-13 NMR Spectroscopy*, edited by G. C. Levy, Vol. 2, p. 81. John Wiley, New York (1976).
- H. Duddeck and M. Kaiser, Org. Magn. Reson. 20, 55 (1982).
- J. B. Stothers, Carbon-13 NMR Spectroscopy, p. 58. Academic Press, New York (1972).
- J. B. Stothers, *Carbon-13 NMR Spectroscopy*, pp. 177 and 197. Academic Press, New York (1972).
- 10. A. Bax and G. A. Morris, *J. Magn. Reson.* **42**, 501 (1981).
- J. B. Stothers, Carbon-13 NMR Spectroscopy, p. 100. Academic Press, New York (1972).

Received 22 November 1990; accepted (revised) 5 March 1991