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ABSTRACT: The nickel-catalyzed synthesis of tetrasubstituted cyclobutenes from alkynes is reported. This transformation is 
uniquely promoted by the use of a primary aminophosphine, an unusual ligand in nickel catalysis. Mechanistic insights for this new 
transformation are provided, and post-reaction modifications of the cyclobutene products to stereodefined cyclic and acyclic com-
pounds are reported, including the synthesis of epi-truxillic acid. 

Since the pioneering work by Reppe and Wilke on the cyclo-
tetramerization of acetylene and ensuing ligand-influenced out-
comes in catalytic cycloadditions,1 nickel catalysis has contrib-
uted to the development of many C−C and C−heteroatom bond-
forming processes.2 Building on these early studies, nickel-cat-
alyzed methods have led to many advances in cycloadditions, 
allowing the assembly of various ring sizes from simple p-com-
ponents depending on the ligand system and precursors em-
ployed.2a,2d While the assembly of six- and eight-membered 
rings have been well developed, accessing cyclobutane and cy-
clobutene products is more limited and typically requires con-
jugated and activated substrates such as allenes, 1,3-enynes, or 
strained rings such as norbornene derivatives. The assembly of 
cyclobutanes and cyclobutenes by the catalytic cycloaddition of 
simple, non-conjugated p-components has thus proven elusive 
by using existing methods. 

Cyclobutenes in particular are highly versatile synthetic in-
termediates because of their ring strain and high reactivity.3 In 
addition, they are also found in many bioactive metabolites, nat-
ural products, drugs, and organic dyes.4 In recent years, much 
progress has been made in strategies for the direct formation of 
the cyclobutene skeleton. Most commonly, the catalytic synthe-
sis of cyclobutenes involves the use of an alkene-alkyne [2+2]-
cycloaddition reaction typically involving conjugated and acti-
vated substrates (Figure 1a). Using this approach, many useful 
methodologies have been reported using transition metal5-6 and 
Lewis acid7 catalysis. An alternate approach involves the reduc-
tive cyclodimerization of two alkynes. This latter approach has 
been developed using a zirconium-mediated pyridine-directed 
strategy (Figure 1b),8 but variations of this process that involve 
sub-stoichiometric catalyst loadings or simple alkynes that lack 
directing groups have not been previously described. Despite 
the advances realized, the development of an intermolecular 
catalytic route with two different alkyne coupling partners is 
currently not available. We recognized that such a process 
would provide new opportunities for rapidly building up useful 
synthetic intermediates from simple starting materials. 

In the course of exploring new types of catalytic additions to 
alkynes, we unexpectedly found that the reductive dimerization 
of alkynes to produce cyclobutenes is the major pathway when 

primary aminophosphine ligands are employed. (Figure 1c). 
Primary b-aminophosphines have rarely been used as ligands in 
catalysis,9 and are not typically employed in ligand screens of 
nickel-catalyzed processes. The reactivity is notable given that 
many nickel-catalyzed reductive transformations have been de-
scribed with alkynes, whereas the alkyne reductive cyclodimer-
ization has not previously been described. Other cycloadditions 
and reductive couplings involving nickel catalysis typically in-
volve monodentate phosphines or NHC ligands,2d suggesting 
that the unique behavior of primary aminophosphines will serve 
as an important counterpart to these well-studied catalytic sys-
tems. Given the novelty and potential utility of the reductive 
cyclodimerization of alkynes in the assembly of stereo- and re-
giochemically-defined cyclobutenes, as well as the lack of in-
formation about the unique reactivity of nickel complexes of 
primary aminophosphines, we report here the development, 
scope, and mechanistic insights of this newly discovered pro-
cess.  

 
Figure 1. Approaches towards the synthesis of cyclobutenes 

We began our investigations by studying the reaction of 1a 
in a High Throughput Experimentation (HTE) platform with 
Ni(COD)2. We screened a wide variety of ligands (L1-L23) 
such as aminophosphines, phosphoramidites, phosphines, 
amines, heterocyclic amines, NHCs and diols (Table 1, entries 
4-5), several Brønsted acids such as methanol, isopropanol and 
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benzoic acid (Table 1, entries 4, 11-12), and reducing agents 
such as triethylborane and dimethylphenylsilane (Table 1, en-
tries 4 and 13).10 Interestingly, we only found significant 
amounts (>10% yield) of the desired cyclobutene 2a with a 
combination of the primary aminophosphine ligand L1, metha-
nol or isopropanol, and triethylborane. Notably, traces of prod-
uct were found with a binary ligand system consisting of a pri-
mary amine (BuNH2) and a tertiary phosphine (PPh3), thus re-
inforcing the need for a tethered aminophosphine backbone. No 
significant amount of cyclobutene product was observed when 
using NiCl2 reduced in situ by Mn or Zn (Table 1, entry 14) or 
the corresponding control experiments (Table 1, entries 2-3).  
Table 1. Screening and optimization of the reaction conditions.a 

 
Entry Variation from standard conditions Yield (%) 

1 None 73 
2b w/o Ni(COD)2, L1 or BEt3 0 
3b w/o MeOH 7 
4b THF:MeOH (4:1) 31 
5b Other class of ligands instead of L1 <5-9 
6c L24 instead of L1 30 
7c L25 instead of L1 19 
8c L26 instead of L1 11 
9c L27 instead of L1 47 
10c L28 instead of L1 37 
11c L1, 4 hours 61 
12b iPrOH instead of MeOH 12 
13b Benzoic acid instead of MeOH 0 
14b PhMe2SiH instead of BEt3 <5 
15c NiCl2 + Mn or Zn instead of Ni(COD)2 <5 

 
a Optimized reaction conditions: 1a (0.45 mmol), Ni(COD)2 (0.045 mmol), 
L1 (0.09 mmol), BEt3 (0.9 mmol), THF:MeOH (1:4 ratio, 0.08 M), 50 ºC, 
2.5 h. b 4:1 ratio THF:MeOH was used in the HTE (10 µmol 1a). c 4 hours. 

Several ligands of this class (L1, L24-L28) were screened on 
a preparative scale (Table 1, entries 6-11), after which L1 was 
revealed as the ligand of choice. After further optimization of 
reaction conditions,10 the head-to-tail trans-cyclobutene 2a was 
obtained in 73% isolated yield. Excellent regio- and stereose-
lectivities were observed, and all reagents and catalysts are 
commercially available, thus making the procedure simple and 
selective for the desired cyclobutenes. 

We then turned our attention to the generality of this trans-
formation. First, a robustness screen was performed, showing a 
high functional group tolerance.11 Then, a series of examples of 
nickel-catalyzed reductive [2+2] cycloadditions of alkynes to 
produce trans-cyclobutenes were illustrated under optimized 
conditions (Scheme 1). The reaction was efficient with alkynes 

bearing alkyl groups with different chain lengths (2a-d). Elec-
tronic properties of the alkyne were evaluated by introducing 
electron-withdrawing and electron-donating groups on the aryl 
moiety. Although electron rich alkynes (2f and 2h) underwent 
coupling faster than electron-poor ones (2g), the desired cyclo-
butene was successfully obtained in all cases. The reaction was 
effective in the presence of unprotected polar functional groups 
such as an alcohol (2e), aldehyde (2k), amide (2j), aryl ether (2f 
and 2i) or amine (2h). Alkynes bearing heterocyclic moieties 
such as 2-pyridyl (2l-m), 2-pyrimidinyl (2n) and 2-thiazolyl 
(2o) also gave rise to the desired cyclobutenes. TMS-alkynes 
showed a silyl group migration on the cyclobutene products (2p 
and 2q).12 Surprisingly, aldehyde/alkyne reductive coupling13 
or demethoxylation14 pathways were not observed. The scala-
bility of this protocol was tested through synthesis of the cyclo-
butene 2e on a 2-gram scale. In this case, the catalyst loading 
was successfully lowered to 2 mol% and the desired cyclobu-
tene was obtained in 62% isolated yield. 

 
Scheme 1. Substrate scope. Isomeric ratios (d.r. and r.r.) calculated 
by GC-FID. a Ni(COD)2 (2 mol %) and L1 (4 mol %) were used. b 
See reference 15. 
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plore the feasibility of this approach, alkynes of different elec-
tronic and steric properties were examined to achieve the de-
sired cross-reductive [2+2] alkyne cycloaddition. First, we at-
tempted the reaction using two electronically opposed alkynes, 
1g and 1f. To our delight, the corresponding heterocoupling 
product 2r was obtained in 62% yield, accompanied by minor 
amounts of the homocoupling products (7% of 2g and 21% of 
2f). Nonetheless, the two regioisomers arising from the position 
of the double bond in the cyclobutene ring were formed in 1:1 
ratio. Then, we subjected the steroid phenyl-17a-ethynylestra-
diol 1s to the reductive [2+2] cycloaddition reaction with 1a. 
Due to the bulkiness of the steroid, it was unreactive towards 
the reductive homo-cyclodimerization. This allowed us to per-
form the heterocoupling in a very clean manner by slowly add-
ing the alkyne 1a via syringe pump. The corresponding hetero-
coupling product 2s was obtained in 59% yield (10:1 d.r.), with 
40% of the starting material 1s being recovered. Furthermore, 
diphenylacetylene 3a gave rise to the cis,cis-diene 4a in good 
yield (Scheme 2a).17a We also attempted the cyclization of 
diynes to form bicyclic cyclobutenes (Scheme 2b). In both 
cases, the dienes 4b and 4c were obtained as the major products 
in good yields.18 The isomer obtained in products 4a-c suggests 
the formation of the trans-cyclobutene followed by a thermal 
conrotatory electrocyclic ring-opening step.17  

 
Scheme 2. a) Reductive homocoupling of diphenylacetylene. b) 
Reductive cyclization of diynes towards dienes. 

The potential synthetic utility of this protocol was then 
demonstrated through the diversification of the cyclobutene 
products (Scheme 3). First, ozonolysis of cyclobutene 2a af-
forded the stereodefined acyclic 1,4-diketone 5 as a single iso-
mer.19 On the other hand, epoxidation of 2a gave rise to the cy-
clobutane epoxide 6 in good yield and 4:1 dr.20 This product 
was then subjected to acidic conditions to perform a ring-con-
traction, thus affording the cyclopropyl ketone 7 in good yield 
and excellent diastereomeric ratio.21 Finally, we targeted the 
synthesis of epi-truxillic acid, a naturally occurring cyclobu-
tanedicarboxylic acid with interesting biological properties.22,23 
To our delight, the hydrogenation of cyclobutene 2e to cyclo-
butane 8 took place with exquisite diastereoselectivity, with 8 
being isolated as a single isomer in good yield.24 Finally, Jones 
oxidation afforded the corresponding epi-truxillic acid 9 in 
quantitative yield.25,26 

A number of experiments were conducted to shed light on the 
mechanistic features of this reductive cyclodimerization pro-
cess. Deuterium-labelling studies displayed 90-92% deuterium 

incorporation using CD3OD and CH3OD in a regio- and stere-
oselective manner. On the other hand, no deuterium incorpora-
tion was observed using CD3OH (Scheme 4a). With these re-
sults in hand, we performed the kinetic analysis of two parallel 
reactions run using CD3OD and CH3OH respectively. A pri-
mary kinetic isotope effect (KIE) of 3.0 was observed, indicat-
ing that a proton transfer is involved in the rate-determining 
step.27 Motivated by the different reaction rate of electron-poor 
and electron-rich alkynes, we studied linear free-energy rela-
tionships to unveil potential cationic or anionic intermediates. 
The reactions using substrates 1a, 1f, 1g and 1h were monitored 
by 1H-NMR to determine the corresponding kinetic behaviors 
(Scheme 4b). The observed Hammett plots, characterized by ρ 
< 0, suggest that a positive charge accumulates in the rate-de-
termining step.28 

 
Scheme 3. Synthetic diversification of cyclobutene 2a and 2f. a) 
O3, CHCl3, –78 ºC. b) m-CPBA, NaHCO3, CHCl3, 0 ºC. c) aq HCl 
(0.1 M), rt. d) H-Cube, 1 mL/min, H2 (60 bar), Pd/C (10%), 60 ºC, 
MeOH (0.25 M). e) CrO3, H2SO4, H2O, acetone. 

 
Scheme 4. Mechanistic experiments. 

With this mechanistic information in hand, a plausible cata-
lytic cycle is proposed for this reaction (Scheme 5). After rapid 
ligand exchange with L1 (I) and coordination of two alkynes to 

4c: 57% yield
CO2MeMeO2C

CO2MeMeO2C3c

Ph

Ph

MeO2C
MeO2C

4b: 60% yield3b

Ph

Ph

N

O N

O
N

O

Standard
conditions

Standard
conditions

4a: 71% yield

Standard
conditions

3a

a)

b)

Me

Me O

(±)-6 (major)

O

Me

Me

O

Me

O

HO

OH

COOH

HOOC

9, epi-truxillic acid

e

a

b c

R

R

d

R=H

R=H

R=OH

(±)-2a (R=H)
(±)-2e (R=OH)

(±)-5

(±)-7

8

81%
67%

62%

75%
97%

Me

Me

Me
Standard 

conditions
H/D

Me

Me

D
Me

Me

H

with CD3OD with CD3OH

90-92% D 0% D

a)

KIE = 3.0

0% D 0% D

Me

Me

Me
Standard 

conditions

b)

R

R

R

ρ = -0.58

Me

Me

D

with CH3OD

90-92% D

0% D

2a or 2a-d
1a

R = NMe2 (2h)
R = OMe (2f)
R = H (2a)
R = CF3 (2g)

Page 3 of 8

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

the nickel center (II),29 Ni(0) may undergo an oxidative cycliza-
tion to form the first C−C bond, generating the nickelacycle 
(III).1,2a,30 Then, the methanol-triethylborane adduct could ad-
duct protonate31 the p-system generating a stabilized cationic 
nickel carbene IV.32,33 Next, a 1,2-alkyl migration would gen-
erate the 4-membered ring and the second C−C bond (V).12,34 
Finally, an ethyl transfer to nickel (VI), b-hydride elimination35 
(VII) and reductive elimination36 gives rise to the desired cy-
clobutene, regenerating the nickel(0) catalyst. In situ HRMS 
(ESI+) analysis of the reaction mixture using alkyne 1e revealed 
a very intense m/z signal at 552.1609 with the characteristic iso-
topic distribution of a nickel species. This data suggests the 
presence of a nickel species that incorporates the aminophos-
phine and the two units of the corresponding alkyne (i.e. struc-
tures II–V). In combination with the Hammett studies and KIE 
experiments, the data overall is consistent with  III being the 
catalyst resting state.  

 
Scheme 5. Proposed catalytic cycle. 

This overall mechanism bears analogy to [3+2] reductive cy-
cloadditions of enals and alkynes that proceed through the pro-
tonation of enolate motifs embedded with a nickel metallacy-
cle.37-38 However, the only previous examples where metallacy-
clopentadienes are converted to cyclobutenes are the stoichio-
metric zirconium-mediated processes described above.8 Nota-
bly, protonation of a Ni(II) metallacyclopentene species by a 
water/borate adduct31a and the protonation of Ni(0) species by a 
similar methanol/borane mixture31b-c have recently been pro-
posed in the hydroalkylation and hydroarylation of allenes, sty-
renes and dienes under similar conditions to our study.31 Alt-
hough Ni(0) protonation would be expected to be faster than 
protonation of III, products resulting from hydroalkylation or 
reduction of the alkyne are only observed as minor by-products. 
Furthermore, exogeneous alkenes such as styrene and E/Z-b-
methylstyrene are not incorporated in the cyclobutene prod-
ucts,39 suggesting that nickel hydride mediated reduction of the 
alkyne and subsequent alkene-alkyne [2+2] cycloaddition reac-
tion is unlikely for the production of cyclobutene products. The 
basis for the unique promotion exhibited by the aminophos-
phine L1 is currently unclear. The role of this ligand architec-

ture may involve features other than simple bidentate coordina-
tion, such as proton shuttling or generation of a Lewis adduct 
with the borane component, and further studies to understand 
the unique behavior of this ligand class are in progress. 

In summary, a nickel-catalyzed reductive [2+2] cycloaddi-
tion reaction of alkynes towards the synthesis of trans-cyclo-
butenes has been developed. The use of an unusual primary 
aminophosphine ligand was key to the discovery of this new 
reaction. Post-reaction modifications highlighted the synthetic 
versatility of these products, including the synthesis of the nat-
ural product epi-truxillic acid. 
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activated alkenes. J. Am. Chem. Soc. 1991, 113, 7784−7785. (b) 
Hays, D. S.; Fu, G. C. Organotin Hydride Catalyzed Carbon−Car-
bon Bond Formation:  Radical-Mediated Reductive Cyclization of 
Enals and Enones. J. Org. Chem. 1996, 61, 4−5. (c) Savchenko, 
A. V.; Montgomery, J. Organozinc/Nickel(0)-Promoted Cycliza-
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