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Enantioselective Nickel-Catalyzed Intramolecular Allylic 

Alkenylations Enabled by Reversible Alkenylnickel E/Z 

Isomerization  

Connor Yap, Gabriel M. J. Lenagh-Snow, Somnath Narayan Karad, William Lewis, Louis J. Diorazio, 

and Hon Wai Lam*  

Abstract: Enantioselective nickel-catalyzed arylative cyclizations of 

substrates containing a Z-allylic phosphate tethered to an alkyne are 

described. These reactions give multisubstituted chiral aza- and 

carbocycles, and are initiated by the addition of an arylboronic acid 

to the alkyne, followed by cyclization of the resulting alkenylnickel 

species onto the allylic phosphate. The reversible E/Z isomerization 

of the alkenylnickel species is essential for the success of the 

reactions.  

Enantioselective metal-catalyzed allylic substitutions of achiral 

or racemic substrates using carbon-centered nucleophiles are a 

major class of reactions for preparing enantioenriched chiral 

compounds.[ 1 ] Although numerous developments have been 

described,[1] there are only a few reports of the enantioselective 

allylation of alkenyl nucleophiles.[2] Chiral copper–N-heterocyclic 

carbene catalysts are highly effective in the enantioselective 

additions of alkenylaluminum,[2a–c] alkenylboron,[2d,f,h] and 

allenylboron[2e] reagents to achiral allylic phosphates. Chiral 

iridium[2g] and rhodium[2i] catalysts are also effective in 

enantioselective additions of alkenylboron reagents to racemic 

allylic alcohols[2g] and allylic halides, [2i] respectively.  

While the aforementioned examples provide valuable 

enantioenriched chiral 1,4-diene building blocks,[2] several 

aspects remain underdeveloped. For example, reactions 

involving fully substituted alkenyl nucleophiles are rare.[3] The 

integration of these reactions into domino processes that form 

more than one new carbon–carbon bond is also not well-

established.[ 3 ] Murakami and co-workers have partially 

addressed these issues by developing rhodium-catalyzed 

cyclizations of 1,6-enynes, in which the reaction is triggered by 

addition of an arylboronic acid to the alkyne (Scheme 1A).[3,4] 

These reactions give cyclopentanes containing a  

 

 

Scheme 1. Arylative cyclizations of enynes. 

 

tetrasubstituted exocyclic alkene.[3a,b] However, only two 

enantioselective reactions were reported, and low selectivity was 

observed in the initial addition to the alkyne, which led to other 

products being formed.[3b] Therefore, the availability of other 

methods to meet these challenges would significantly enhance 

the utility of domino alkyne carbometalation–allylic alkenylations. 

Here, we describe highly enantioselective intramolecular 

alkenylations of allylic phosphates with fully substituted 

alkenylnickel species, which are themselves generated by the 

nickel-catalyzed addition of arylboronic acids to internal alkynes 

(Scheme 1B). Notably, this process gives chiral 1,4-diene-

containing hetero- and carbocycles that are inaccessible from 

these substrates with established conditions using rhodium 

catalysis.[3] These include 4,5-diaryl 1,2,3,6-tetrahydropyridines, 

which are seen in naturally occurring alkaloids such as (–)-

septicine and (–)-tylophorine (Scheme 1C).[5] 

Our studies began with the arylative cyclization of substrate 

1a, which contains a Z-allylic phosphate tethered to an alkyne 

(Table 1). Guided by our recent work,[ 6 ] we anticipated that 

arylnickelation of the alkyne to place nickel distal to the 

electrophile, followed by reversible E/Z isomerization of the 

alkenylnickel species, would provide a species capable of 

cyclizing onto the allylic phosphate to give products of formal 

anti-carbometalation (Scheme 1B).[7 ] However, of the existing 

reports of enantioselective nickel-catalyzed allylic substitutions  
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Table 1. Evaluation of reaction conditions.[a] 

 
Entry Ligand 2a:3a[b] Combined yield [%][c] ee of 2a [%][d] 

1 L1 10:1 46 −36[e] 

2 L2 10:1 44 80 

3 L3 10:1 60 98 

4 L4 – <5 – 

5 L5 >19:1 80 90 

6 L6 >19:1 33 >99 

7[f] L6 >19:1 80 96 

[a] Reactions were conducted using 0.05 mmol of 1a. [b] Determined by 1H 

NMR analysis of the crude reactions. [c] Determined by 1H NMR analysis 

using 1,4-dimethoxybenzene as an internal standard. [d] Determined by HPLC 

analysis on a chiral stationary phase. [e] Major product was the enantiomer of 

2a. [f] Conducted at 100 °C.  

 

with carbon-centered nucleophiles,[8,9] none describe the use of 

alkenyl nucleophiles, and success in this ring-closing step was 

therefore uncertain.  

We were pleased to observe that reaction of 1a with 

PhB(OH)2 (2.0 equiv) in the presence of Ni(OAc)2·4H2O (10 

mol%) and various chiral P,N-ligands (10 mol%) in mixtures of 

MeCN with THF or 2-MeTHF did indeed provide the anti-

carbometallative cyclization product 2a. However, these 

reactions proceeded in low conversions (<10%) and 2a was 

accompanied by comparable amounts of pyrrolidine 3a, resulting 

from arylnickelation of the alkyne with the opposite 

regioselectivity. No reaction was observed in other solvents such 

as DMF, dioxane, and toluene. Fortunately, in 2,2,2-

trifluoroethanol (TFE), reactions conducted with 

phosphinooxazoline (PHOX) ligands L1–L3[ 10 ] gave 2a in 

moderate NMR yields and in 36–98% ee, accompanied by only 

a small quantity of pyrrolidine 3a (entries 1–3).[11 ] (S,S)-t-Bu-

FOXAP (L4) gave no reaction (entry 4). Improved selectivities 

(>19:1) in favor of 2a were obtained using NeoPHOX ligands[12] 

L5 and L6 (entries 5–7).[13] Although the enantioselectivity was 

higher using (S)-t-Bu-NeoPHOX (L6) (compare entries 5 and 6), 

the conversion was modest (entry 6). However, increasing the 

temperature to 100 °C gave a significantly higher yield of 2a with 

only a small decrease in enantioselectivity (entry 7). The 

conditions of entry 7 were subsequently employed to test the 

generality of this process.[14] 

The scope of this reaction with respect to the alkyne-

tethered allylic phosphate was then explored in reactions with 

PhB(OH)2, which gave products 2a–2i in 45–92% yield and 49–

99% ee (Scheme 2). High selectivities (≥14:1) in favor of the six-

membered ring products were observed. Regarding the 

substituent on the alkyne, the reaction is compatible with a 

phenyl group (2a), various para- (2b and 2c), meta- (2d), and 

ortho-substituted benzenes (2e), and a 2-thienyl group (2f). An 

 
Scheme 2. Scope of 1,6-enynes. Reactions were conducted using 0.30 mmol 

of 1. Yields are of isolated products. Values in parentheses refer to the ratio of 

2:3 as determined by 1H NMR analysis of the crude reactions. Unless stated 

otherwise, the minor isomers 3 were not evident in the isolated products. 

Enantiomeric excesses were determined by HPLC analysis on a chiral 

stationary phase. [a] Product 2i contained trace quantities of inseparable, 

unidentified impurities, and the ratio of 2i:3i could not be determined. 

 

alkenyl group on the alkyne is also tolerated, though the product 

2g was formed in 49% ee. The reaction of a substrate containing 

a methyl group on the alkyne gave only a complex mixture of 

products. Replacement of the p-toluenesulfonyl group with a 4-

nitrobenzenesulfonyl group is possible (2h). Finally, changing 

the linking group between the alkyne and the allylic phosphate to 

an all-carbon tether enabled the formation of carbocycle 2i in 51% 

yield and 96% ee. 

Pleasingly, this process is compatible with a range of other 

(hetero)arylboronic acids, which gave products 2j–2r in 47–66% 

yield and 96–99% ee from three different 1,6-enynes (Scheme 

3). The scope includes para- (2p and 2q), meta- (2j and 2r), 

ortho- (2m), and disubstituted phenylboronic acids (2k and 2n), 

containing methyl (2k and 2p), halide (2j, 2m, and 2n), alkoxy 

(2n), nitrile (2q), or ester groups (2r). In addition, 3-

thienylboronic acid (2l) and 2-naphthylboronic acid (2o) are also 

tolerated. 

Further studies of the scope of the alkyne-tethered allylic 

phosphate are shown in Eq. (1–3). A trimethylsilyl-substituted 

alkyne 1j gave low conversions under the standard conditions, 

but replacing ligand L6 with L5 gave 2s in 70% yield and 69% 

ee [Eq. (1)]. The Z-stereochemistry of the allylic phosphate 

appears to be essential, as E-allylic phosphate 4 only underwent 

hydroarylation to give 5 in 63% yield, as a 2:1 ratio of geometric 

isomers [Eq. (2), stereochemistry of 5 not assigned]. Although 

the reasons for this observation are not understood, one 

possibility is that the steric demands of this reaction are better 

accommodated by Z-allylic phosphates. The standard conditions 

were ineffective in the formation of a cyclopentene from 1,5-

enyne 6, but use of (R)-Ph-PHOX (L1) in place of L6 gave 7 in 

64% yield and 42% ee [Eq. (3)].  
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Scheme 3. Scope of boronic acids. Reactions were conducted using 0.30 

mmol of 1. Yields are of isolated products. Values in parentheses refer to the 

ratio of 2:3 as determined by 1H NMR analysis of the crude reactions. Unless 

stated otherwise, the minor isomers 3 were not evident in the isolated products. 

Enantiomeric excesses were determined by HPLC analysis on a chiral 

stationary phase. [a] Products 2p–2r contained trace quantities of inseparable, 

unidentified impurities, and the ratio of 2:3 could not be determined. 

 

 

Finally, replacing the arylboronic acid with other 

pronucleophilic species was examined. Although no reaction 

occurred with methylboronic acid, (E)-2-phenylvinylboronic acid 

reacted with 1a to give 8 in 98% ee, albeit in 13% yield [Eq. (4)]. 

 
 

Scheme 4 illustrates a possible catalytic cycle for these 

reactions, using 1a and PhB(OH)2 as representative reactants. 

Transmetalation of PhB(OH)2 with the chiral nickel species 9, 

which could have hydroxide, acetate, 2,2,2-trifluoroethoxide, or 

diethylphosphate ligands resulting from the possible species in 

the reaction, gives arylnickel species 10. Syn-phenylnickelation 

of 1a gives alkenylnickel species (E)-11, which undergoes 

reversible E/Z isomerization to give (Z)-11.[6,7a, 15 ] The 

mechanism of E/Z isomerization is not currently known, but may 

involve the intermediacy of zwitterionic carbene-type 

species.[15a, 16 ] Migratory insertion of the alkene of the allylic 

phosphate into the carbon–nickel bond of (Z)-11 gives 

alkylnickel species 12, from which β-phosphate elimination 

would liberate the product 2a, regenerating the nickel species 9. 

This mechanism for allylic substitution[ 17 ] is similar to that 

proposed by Murakami and co- workers for arylative cyclizations 

of 1,6-enynes. [3a,b] Furthermore, it stands in contrast to other 

related Ni-catalyzed allylic substitutions, which are thought to 

proceed through allylnickel intermediates. [1j,8j−l, 18 ] However, 

although we have proposed that nickel remains in the +2 

oxidation state throughout, we do not rule out alternative 

mechanisms involving Ni(I) species. [7a]  

 

 

Scheme 4. Postulated catalytic cycle. 

 

In conclusion, we have reported enantioselective nickel-

catalyzed allylic alkenylations of allylic phosphates which 

provide a range of chiral 1,4-diene-containing hetero- and 

carbocycles in high enantiomeric excesses. This reaction further 

demonstrates the power of the reversible E/Z isomerization of 

alkenylnickel species in providing products that would otherwise 

be inaccessible using syn-selective alkyne carbometalation 

processes. 
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