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Nickel-Catalyzed Alkylation of Amide Derivatives  
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†
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†
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Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States 

ABSTRACT: We report the catalytic alkylation of amide derivatives, which relies on the use of non-precious metal 

catalysis. Amide derivatives are treated with organozinc reagents utilizing nickel catalysis to yield ketone products. The 

methodology is performed at ambient temperature and is tolerant of variation in both coupling partners. A precursor to 

a nanomolar glucagon receptor modulator was synthesized using the methodology, underscoring the mild nature of this 

chemistry and its potential utility in pharmaceutical synthesis. These studies are expected to further promote the use of 

amides as synthetic building blocks.  
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The ability to activate traditionally unreactive func-

tional groups as synthons continues to be a vital area of 

research. One particularly stable functionality is the am-

ide.
1
  The resonance stabilization of amides has been 

well understood for decades;
1,2

 consequently, the use of 

amides in C–N bond cleavage reactions has remained 

limited.  Recently, however, there has been much inter-

est in breaking amide C–N bonds to forge new C–

heteroatom and C–C bonds.
3,4,5,6,7

 Such methodologies 

provide new tactics to prepare acyl derivatives, but with 

the key benefit of amide stability. The use of amides in 

multistep synthesis, followed by selective C–N bond 

activation and coupling, should ultimately prove advan-

tageous in the synthesis of complex molecules. 

The present study focuses on activating and coupling 

amides to build acyl C–C bonds in an intermolecular 

fashion (Figure 1). 

 

 

Figure 1. Nickel-catalyzed C–C bond forming reactions 

from amides. 

 

Such catalytic methodology would complement Weinreb 

amide chemistry, but without the use of highly basic and 

pyrophoric organometallic reagents.
8
 Prior contributions 

in this area include Suzuki–Miyaura couplings (1�2) 

reported by Zou (Pd),
4
 Szostak (Pd),

5
 and our laboratory 

(Ni).
3b

 In each of these cases, the nucleophilic coupling 

partner was restricted to aryl boronate species, thus lim-

iting the application of this methodology. The corre-

sponding alkylative coupling (1�3) would be highly 

desirable given the prevalence of alkyl ketones in mole-

cules of biological importance and the versatility of al-

kyl ketones as synthetic building blocks. Herein, we re-

port the first alkylative cross-coupling of amide deriva-

tives. 

Following unsuccessful attempts to couple amide de-

rivatives with aliphatic boronic acids and esters, we opt-

ed to pursue the use of organozinc reagents as cross-

coupling partners.
9
 Our earlier studies have relied on the 

use of nickel catalysis for amide C–N bond activation,
3
 

which is notable given that nickel is less expensive, 

more abundant, and displays a lower CO2 footprint 

compared to its precious metal counterpart, palladium.
10

 

Catalytic acyl couplings
11

 with organozinc reagents are 

well precedented using acid halides (Pd or Ni),
12

 anhy-

drides (Pd, Ni, or Rh),
12a,13

 and thioesters (Pd or 

Ni),
12a,b,14 

but the corresponding coupling of amides has 

not been reported.   

To initiate our study, we examined the coupling of 

naphthamides 4 with benzylzinc bromide (5) in the pres-

ence of catalytic Ni(cod)2 and the NHC ligand SIPr in 

THF (Scheme 1). Although several amide derivatives 

failed to undergo the coupling (entries 1–3), we were 

delighted to find that N-alkyl,Boc and N-alkyl,Ts deriva-

tives could be utilized (entries 4–5, respectively).
15

 N-

Alkyl,Ts amides (e.g., 4e) are well suited for use in mul-

Aryl
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(2)

Amides
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tistep synthesis.
16

  It should be noted that the successful 

reactions of 4d and 4e proceeded at room temperature, 

which compares favorably to the few existing examples 

of catalytic amide C–N bond activation (ca. 50–160 °C)
 

3,4,5,6,7
 and highlights the mild nature of this coupling. 

 

 

Scheme 1. Survey of amide N-substituents in the cou-

pling of substrates 4 with 5.
a 

a
 Conditions: Ni(cod)2 (10 mol%), SIPr (10 mol%), substrate 4 

(1.0 equiv), benzylzinc bromide (5, 1.5 equiv) and THF (1.0 

M) at 23 °C for 24 h. 
b
 Yields determined by 

1
H NMR analysis 

using hexamethylbenzene as an internal standard. 

Having found that the alkylative coupling of amide 

derivatives was indeed possible,17 we evaluated the 

scope of the amide substrate (Figure 2). The use of the 

parent naphthyl substrate gave 6 in 80% isolated yield.  

Additionally, it was found that the methodology was not 

restricted to extended aromatics. For example, the sub-

strate derived from benzoic acid coupled smoothly to 

furnish 7 in 74% yield.  Substrates bearing electron-

donating groups could also be employed, as demonstrat-

ed by the formation of 8–10. From the latter two cases, it 

should be emphasized that the presence of tertiary 

amines does not hinder catalysis.  As shown by the for-

mation of 11 and 12, the electron-withdrawing –F and –

CF3 substituents were also tolerated.
18

   

We also examined the scope of the organozinc reagent 

in this methodology (Figure 3).
19,20 n-Propylzinc bro-

mide was successfully employed to furnish 13 in 80% 

yield.  To assess the tolerance of the methodology to-

ward β-branching, neopentylzinc iodide, a very hindered 

nucleophile was tested and found to undergo the desired 

coupling to furnish 14. α-Branched nucleophiles could 

also be employed, as judged by the formation of 15 and 

16.  

 

Figure 2. Scope of the amide substrate.
a 

a
 Conditions unless otherwise stated: Ni(cod)2 (10 mol%), 

SIPr (10 mol%), substrate (1.0 equiv), benzylzinc bromide (5, 

1.5 equiv) and THF (1.0 M) at 23 °C for 24 h. Yields shown 

reflect the average of two isolation experiments. 
b 

The corre-

sponding N-Bn,Boc benzamide derivative was used. 

 

 

Figure 3. Scope of the organozinc coupling partner.
a 

a Conditions unless otherwise stated: Ni(cod)2 (10 mol%), 

SIPr (10 mol%), substrate (1.0 equiv), organozinc reagent (1.5 

equiv) and THF (1.0 M) at 23 °C for 24 h. Yields shown re-

flect the average of two isolation experiments. 

Notably, couplings utilizing secondary organozinc rea-

gents are known to be challenging.
21

 Finally, cyclopen-

tyl and cyclohexyl organozinc reagents underwent the 
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desired coupling in good yield to deliver products 17 

and 18, respectively. 

The alkylative cross-coupling methodology was fur-

ther probed in a synthetic application (Scheme 2). On 

gram-scale, amide derivative 19 was coupled with cy-

clohexylzinc iodide (20) using our optimal nickel-

catalyzed reaction conditions.  This transformation pro-

vided ketone 21 in 71% yield without disturbing the es-

ter.
22

 Ketone 21 is an intermediate in Pfizer’s synthesis 

of the glucagon receptor modulator 22.
23

 The cross-

coupling route to 21 provides a favorable alternative to 

the known Weinreb amide displacement chemistry de-

scribed in the literature, which proceeds in 34% yield.
23

 

 

 

Scheme 2. Gram-scale coupling to form ketone 21. 

In summary, we have developed the first catalytic al-

kylation of amide derivatives. The transformation in-

volves the coupling of N-alkyl,Ts or N-alkyl,Boc amides 

with organozinc reagents using nickel catalysis.  The 

methodology proceeds at room temperature and is toler-

ant of variation in both the substrate and nucleophilic 

coupling partner. The synthesis of 21 underscores the 

mildness and scalability of this methodology, along with 

the applicability of this technology to pharmaceutical 

synthesis. As such, we expect these studies will further 

promote the use of amides as synthetic building blocks 

for use in drug and natural product synthesis. 
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