Regioselective Reaction of Ethyl 5-Acetyl-3,4-dihydropyridine-1(*2H*)-carboxylate with Hydrazines: A Facile Approach to New Pyrazole Derivatives

Nazar B. Maximov,^{a,b} Pavel K. Mykhailiuk,^{*a,b} Sergey M. Golovach,^a Anton V. Tverdokhlebov,^{a,b} Zoya V. Voitenko,^b Andrey A. Tolmachev^{a,b}

- ^a Enamine Ltd., Alexandra Matrosova Street 23, Kiev 01103, Ukraine
- ^b Department of Chemistry, Kiev National Taras Shevchenko University, Volodymyrska Street 64, Kiev 01033, Ukraine Fax +380(44)2351273; E-mail: Pashamk@gmx.de

Received 26 February 2010; revised 3 March 2010

Abstract: The reaction of ethyl 5-acetyl-3,4-dihydropyridine-1(2H)-carboxylate with diverse aliphatic as well as aromatic mono-substituted hydrazines resulted in the regioselective formation of N-substituted 3-methylpyrazoles.

Key words: pyrazole, hydrazine, tetrahydropyridine, regioselectivity

Pyrazoles are an important class of organic compounds used in the pharmaceutical industry. Compounds containing the pyrazole motif are being developed in a wide range of therapeutic areas including CNS, metabolic diseases and endocrine functions, and oncology.¹ A number of pyrazole-containing compounds have been successfully commercialized, such as the blockbuster drugs Viagra, Celebrex, and Acomplia. Substituted pyrazoles have also been applied as ligands for transition-metal-catalyzed cross-coupling reactions.²

The chemistry of substituted pyrazoles has been extensively studied, and many synthetic strategies for this heterocyclic system are known. One such method is based on the reaction of hydrazines with β -enamino ketones to give the corresponding pyrazoles.^{3,4} Herein we report a regioselective synthesis of new pyrazole derivatives from β -enamino ketone **1** and diverse monosubstituted hydrazines.

Despite the structural simplicity of 1-(1,4,5,6-tetrahydropyridin-3-yl)ethanone (1) (readily available from 3acetylpyridine),^{3a} there is, to the best of our knowledge, only one report in the literature of the synthesis of pyrazoles from 1 (Scheme 1). In 1970, Quin and Pinion showed, that 1 reacted with phenylhydrazine to form a mixture of two isomeric pyrazoles 2/3 (Scheme 1).^{3a} The regioselective synthesis of the individual compounds 2 and 3, however, was not performed.

We suggested that changing the reactivity of the amino group in 1 by using an N-protecting group might have an influence on the regioselectivity of the reaction. In fact, heating a mixture of N-ethoxycarbonyl-protected compound 4 and phenylhydrazine in aqueous ethylene glycol at 140 °C resulted in the formation of 5 as the sole regio-

SYNTHESIS 2010, No. 11, pp 1781–1786 Advanced online publication: 06.04.2010 DOI: 10.1055/s-0029-1219760; Art ID: Z04810SS © Georg Thieme Verlag Stuttgart · New York isomer (Scheme 2). Moreover, the expected intermediate **6** was also isolated when the reaction was performed at 78 °C in ethanol. Hydrazone **6** was subsequently transformed into pyrazole **5** by heating at 140 °C in aqueous ethylene glycol (Scheme 2).

Scheme 1 Synthesis of the mixture of pyrazoles 2/3 according to ref. 3a

Scheme 2 Synthesis of pyrazole 5

Figure 1 Hydrazines 7–14

Hydrazine	Time ^a (h)	Product		Yield (%)	Hydrochloride ^b	Yield (%)
PhNHNH ₂	4	5	N NH CO ₂ Et	86	2	96
7	4	15	N NH CO ₂ Et	80	23	94
8	4	16	N NH CO ₂ Et	85	24	95
9	4	17	NH CO2Et	85	25	94
10	3.5	18	NH CO2Et N	73	26	95
11	3	19	N NH CO ₂ Et	72	27	92
12	6	20	N NH CO ₂ Et	90	28	92
13	4	21	NH CO ₂ Et OH	82	29	97
14	4	22	N NH CO ₂ Et	83	30	95

Table 1 Reaction Conditions for the Synthesis of Pyrazoles 5, 15–22 from β -Enamino Ketone 4 and Hydrazines and Formation of Their Hydrochlorides

^a Conditions: (CH₂OH)₂, 140 °C.

^b For conditions see Scheme 3.

Synthesis 2010, No. 11, 1781–1786 $\,$ $\,$ $\,$ $\,$ $\,$ Thieme $\,$ Stuttgart \cdot New York $\,$

Thereafter, to show the applicability of the *N*-ethoxycarbonyl moiety in **4** as a 'pucker' for the regioselective synthesis of various pyrazoles, a set of diverse hydrazines 7-14 were tested (Figure 1).

Indeed, all the products were obtained as single regioisomers **5**, **15–22** in 72–90% yield (Table 1). Noteworthy, the reaction was equally efficient with all types of hydrazine used: aromatic, e.g., PhNHH₂ and **7–9**, heteroaromatic **10**, and aliphatic **11–14**.

The structures of the obtained pyrazoles were confirmed by NOESY experiments (Figure 2).

Figure 2 The key NOESY correlations of the selected representatives of pyrazoles with aromatic 16 and aliphatic 21 substituents

Finally, the protected pyrazoles **5**, **15–22** were easily converted into the corresponding amines **2**, **23–30** by heating at reflux in concentrated hydrochloric acid (Scheme 3, Table 1).

Scheme 3 Synthesis of amines 2, 23–30

In summary, we have shown, that the reaction of ethyl 5-acetyl-3,4-dihydropyridine-1(2H)-carboxylate (4) with diverse aliphatic and aromatic hydrazines occurs in a regioselective manner to provide N-substituted 3-methyl-pyrazoles.

Solvents were purified according to standard procedures. All other materials were purchased from Aldrich and Enamine. Melting points are uncorrected. Analytical TLC was performed using Polychrom SI F_{254} plates. ¹H and ¹³C NMR spectra were recorded either on a Bruker Avance 500 spectrometer (at 499.9 MHz and 124.9 MHz) with TMS as internal standard. Mass spectra were recorded on an Agilent 1100 LCMSD SL instrument by chemical ionization (CI).

1-(1,4,5,6-Tetrahydropyridin-3-yl)ethanone (1)

Compound 1 was prepared following the method of Quin and Pinion.^{3a} The product was purified by fractional distillation in vacuo; yield: 67%; bp 140–142 °C/1.33 mbar.

Ethyl 5-Acetyl-3,4-dihydropyridine-1(2*H*)-carboxylate (4)

Compound **4** was synthesized following the method of Wenkert and Hudlicky;^{3e} yield: 89%; mp 47–49 °C.

Ethyl 5-[(Z)-1-(Phenylhydrazono)ethyl]-3,4-dihydropyridine-1(2H)-carboxylate (6)

A 50-mL reaction vessel equipped with a condenser was charged with a soln of phenylhydrazine (10 mmol) and **4** (10 mmol) in EtOH (30 mL); the soln was heated at reflux for 4 h. Thereafter, the soln was evaporated under reduced pressure to give the corresponding crude yellow hydrazone **6**. The product was washed with H₂O (30) and hexane (25 mL) and dried in vacuo; yield: 97%; mp 126–127 $^{\circ}$ C.

¹H NMR (500 MHz, DMSO-*d*₆): δ = 9.02 (s, 1 H, NH), 7.18 (m, 5 H, Ph), 6.71 (s, 1 H, CH), 4.19 (q, ³*J* = 6.5 Hz, 2 H, OCH₂), 3.57 (t, ³*J* = 7 Hz, 2 H, NCH₂), 2.48 (t, ³*J* = 7 Hz, 2 H, CH₂C), 1.99 (s, 3 H, CH₃), 1.81 (m, ³*J* = 7 Hz, 2 H, CH₂), 1.27 (t, ³*J* = 6.5 Hz, 3 H, CH₃CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 153.22 (s, CO), 146.94 (s, *tert*-C, CN), 142.04 (s, *tert*-C, Ph), 129.20 (s, 2 C, Ph), 123.84 (s, CH), 119.72 (s, *tert*-C), 118.73 (s, Ph), 113.02 (s, 2 C, Ph), 62.20 (s, OCH₂), 42.54 (s, CH₂N), 21.60 (s, CCH₂), 21.31 (s, CH₂), 14.91 (s, CH₃CH₂), 11.58 (s, CH₃).

MS: $m/z = 288.3 (M + 1)^+$.

Pyrazoles 5, 15-22; General Procedure

A 25-mL reaction vessel equipped with a condenser was charged with a soln of the corresponding monosubstituted hydrazine (10 mmol), 7 (10.5 mmol) and concd HCl (0.25 mL) in aq ethylene glycol (10–15 mL). The soln was stirred under an inert atmosphere at 140 °C for 3–6 h followed by concentration in vacuo. The gummy residue was dissolved in CHCl₃ (50 mL), washed with 5% aq HCl (2×20 mL) and sat. aq NaHCO₃ (2×30 mL), and dried (MgSO₄). The solvent was removed under reduced pressure to give the corresponding pyrazoles **5**, **15–22**. Scale of the synthesis: 1–5 g of **7**.

Ethyl 3-(3-Methyl-1-phenyl-1*H*-pyrazol-4-yl)propylcarbamate (5)

Pale brown oil; yield: 86%.

¹H NMR (500 MHz, CDCl₃): δ = 7.67 (s, 1 H, CH), 7.67 (d, ³*J* = 7.52 Hz, 2 H, Ph), 7.40 (t, ³*J* = 7.5 Hz, 2 H, Ph), 7.21 (t, ³*J* = 7.5 Hz, 1 H, Ph), 4.74 (br s, 1 H, NH), 4.12 (q, ³*J* = 6.5 Hz, 2 H, OCH₂), 3.24 (m, ³*J* = 6 Hz, 2 H, CH₂NH), 2.49 (t, ³*J* = 7.5 Hz, 2 H, CCH₂), 2.28 (s, 3 H, CH₃), 1.79 (m, ³*J* = 7 Hz, 2 H, CH₂), 1.24 (t, ³*J* = 7 Hz, 3 H, CH₃CH₂).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 156.85 (s, CO), 149.06 (s, *tert*-C, CCH₃), 140.16 (s, *tert*-C, Ph), 129.32 (s, 2 C, Ph), 125.56 (s, CH), 125.32 (s, Ph), 120.73 (s, *tert*-C, CCH₂), 118.37 (s, 2 C, Ph), 60.72 (s, OCH₂), 40.47 (s, CH₂NH), 30.44 (s, CH₂), 20.97 (s, CCH₂), 14.70 (s, CH₃CH₂), 11.95 (s, CH₃).

MS: $m/z = 288.2 (M + 1)^+$.

Ethyl 3-[1-(2-Fluorophenyl)-3-methyl-1*H*-pyrazol-4-yl]propylcarbamate (15)

Pale brown oil; yield: 80%.

¹H NMR (500 MHz, CDCl₃): δ = 7.73 (s, 1 H, CH), 7.67 (t, ${}^{3}J_{H-F}$ = 8 Hz, 1 H, Ph), 7.20 (m, 3 H, Ph), 4.68 (br s, 1 H, NH), 4.12 (q, ${}^{3}J$ = 6.5 Hz, 2 H, OCH₂), 3.25 (m, ${}^{3}J$ = 6 Hz, 2 H, CH₂NH), 2.50 (t, ${}^{3}J$ = 7.5 Hz, 2 H, CCH₂), 2.29 (s, 3 H, CH₃), 1.80 (m, ${}^{3}J$ = 7 Hz, 2 H, CH₂), 1.24 (t, ${}^{3}J$ = 7 Hz, 3 H, CH₃CH₂).

¹³C NMR (100 MHz, CDCl₃): δ = 156.78 (s, CO), 153.19 (d, ¹*J*_{C,F} = 198.1 Hz, CF) 148.90 (s, *tert*-C, *C*CH₃), 129.33 (s, Ph), 126.73 (s, *tert*-C, Ph), 124.84 (s, CH), 125.32 (s, Ph), 123.74 (s, *tert*-C, *C*CH₂), 120.58 (s, Ph), 116.62 (s, Ph), 60.74 (s, OCH₂), 40.56 (s,

Synthesis 2010, No. 11, 1781–1786 © Thieme Stuttgart · New York

CH₂NH), 30.45 (s, CH₂), 20.99 (s, CCH₂), 14.66 (s, CH₃CH₂), 11.83 (s, CH₃).

MS: $m/z = 306.2 (M + 1)^+$.

Ethyl 3-[1-(3-Chlorophenyl)-3-methyl-1*H*-pyrazol-4-yl]propylcarbamate (16)

Pale brown oil; yield: 85%.

¹H NMR (500 MHz, CDCl₃): δ = 7.66 (s, 1 H, CH), 7.48 (s, 1 H, Ph), 7.48 (d, ³*J* = 8 Hz, 1 H, Ph), 7.31 (t, ³*J* = 8 Hz, 1 H, Ph), 7.16 (d, ³*J* = 8 Hz, 1 H, Ph), 4.81 (br s, 1 H, NH), 4.12 (q, ³*J* = 6.5 Hz, 2 H, OCH₂), 3.23 (m, ³*J* = 6 Hz, 2 H, CH₂NH), 2.46 (t, ³*J* = 7.5 Hz, 2 H, CCH₂), 2.27 (s, 3 H, CH₃), 1.77 (m, ³*J* = 7 Hz, 2 H, CH₂), 1.23 (t, ³*J* = 7 Hz, 3 H, CH₃CH₂).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 156.80 (s, CO), 149.61 (s, tert-C, CCH₃), 140.88 (s, tert-C, Ph), 135.18 (s, Ph) 130.47 (s, Ph), 130.36 (s, Ph), 125.59 (s, CH), 121.37 (s, tert-C, CCH₂), 118.65 (s, Ph), 116.26 (s, Ph), 60.79 (s, OCH₂), 40.45 (s, CH₂NH), 30.37 (s, CH₂), 20.90 (s, CCH₂), 14.65 (s, CH₃CH₂), 11.82 (s, CH₃).

MS: $m/z = 322.7 (M + 1)^+$.

Ethyl 3-[1-(4-Chlorophenyl)-3-methyl-1*H*-pyrazol-4-yl]propylcarbamate (17)

Pale brown oil; yield: 85%.

¹H NMR (500 MHz, CDCl₃): δ = 7.65 (s, 1 H, CH), 7.54 (d, ³*J* = 8 Hz, 2 H, Ph), 7.36 (d, ³*J* = 8 Hz, 1 H, Ph), 4.73 (br s, 1 H, NH), 4.11 (q, ³*J* = 6.5 Hz, 2 H, OCH₂), 3.24 (m, ³*J* = 6 Hz, 2 H, CH₂NH), 2.48 (t, ³*J* = 7 Hz, 2 H, CCH₂), 2.27 (s, 3 H, CH₃), 1.78 (m, ³*J* = 7 Hz, 2 H, CH₂), 1.24 (t, ³*J* = 7 Hz, 3 H, CH₃CH₂).

¹³C NMR (100 MHz, CDCl₃): δ = 156.87 (s, CO), 149.43 (s, *tert*-C, CCH₃), 138.66 (s, *tert*-C, Ph), 130.76 (s, Ph), 129.32 (s, 2 C, Ph), 125.31 (s, CH), 121.17 (s, *tert*-C, CCH₂), 119.41 (s, 2 C, Ph), 60.70 (s, OCH₂), 40.38 (s, CH₂NH), 30.33 (s, CH₂), 20.87 (s, CCH₂), 14.66 (s, CH₃CH₂), 11.86 (s, CH₃).

MS: $m/z = 322.9 (M + 1)^+$.

Ethyl 3-[1-(1*H*-Benzimidazol-2-yl)-3-methyl-1*H*-pyrazol-4-yl]propylcarbamate (18)

Yellow solid; yield: 73%; mp 180 °C (subl.).

¹H NMR (500 MHz, DMSO-*d*₆): δ = 8.68 (s, 1 H, CH), 7.60 (d, ³*J* = 6.5 Hz, 2 H, C₇H₆N₂), 7.39 (t, ³*J* = 6.5 Hz, 2 H, C₇H₅N₂), 7.17 (br s, 1 H, NH), 6.88 (br s, 1 H, NH), 3.94 (q, ³*J* = 6 Hz, 2 H, OCH₂), 3.03 (m, 2 H, CH₂NH), 2.43 (t, ³*J* = 6.5 Hz, 2 H, CCH₂), 2.27 (s, 3 H, CH₃), 1.68 (m, ³*J* = 6.5 Hz, 2 H, CH₂), 1.12 (t, ³*J* = 6 Hz, 3 H, CH₃CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 156.86 (s, CO), 155.17 (s, *tert*-C, C₇H₅N₂), 131.34 (s, *tert*-C, C₇H₅N₂), 129.08 (s, *tert*-C, C₇H₅N₂), 142.98 (s, *tert*-C, CCH₃), 125.7 (s, CH), 125.26 (s, 2 C C₇H₅N₂), 120.88 (s, *tert*-C, CCH₂), 113.98 (s, C₇H₅N₂), 109.03 (s, C₇H₅N₂), 60.05 (s, OCH₂), 39.04 (s, CH₂NH), 29.56 (s, CH₂), 20.73 (s, CCH₂), 15.17 (s, CH₃CH₂), 12.19 (s, CH₃).

MS: $m/z = 328.4 (M + 1)^+$.

Ethyl 3-(1,3-Dimethyl-1*H*-pyrazol-4-yl)propylcarbamate (19) Yellow oil; yield: 72%.

¹H NMR (500 MHz, CDCl₃): δ = 7.05 (s, 1 H, CH), 4.83 (br s, 1 H, NH), 4.06 (q, ³*J* = 6.5 Hz, 2 H, OCH₂), 3.73 (s, 3 H, NCH₃), 3.15 (m, ³*J* = 6 Hz, 2 H, CH₂NH), 2.35 (t, ³*J* = 7 Hz, 2 H, CCH₂), 2.13 (s, 3 H, CH₃), 1.67 (m, ³*J* = 7 Hz, 2 H, CH₂), 1.19 (t, ³*J* = 7 Hz, 3 H, CH₃CH₂).

¹³C NMR (100 MHz, CDCl₃): δ = 156.77 (s, CO), 146.32 (s, *tert*-C, *C*CH₃), 129.10 (s, CH), 118.23 (s, *tert*-C, *C*CH₂), 60.44 (s, OCH₂), 40.48 (s, CH₂NH), 38.53 (s, NCH₃), 30.54 (s, CH₂), 20.77 (s, CCH₂), 14.45 (s, CH₃CH₂), 11.50 (s, CH₃).

Synthesis 2010, No. 11, 1781–1786 © Thieme Stuttgart · New York

MS: $m/z = 226.3 (M + 1)^+$.

Ethyl 3-(1-Isobutyl-3-methyl-1*H*-pyrazol-4-yl)propylcarbamate (20)

Yellow oil; yield: 90%.

¹H NMR (500 MHz, CDCl₃): $\delta = 6.84$ (s, 1 H, CH), 5.56 (br s, 1 H, NH), 3.81 (q, ³*J* = 6 Hz, 2 H, OCH₂), 3.48 (d, ³*J* = 6.5 Hz, 2 H, NCH₂CH), 2.91 (m, 2 H, CH₂NH), 2.13 (t, ³*J* = 6.5 Hz, 2 H, CCH₂), 1.88 (m, 4 H, CH₃, CH), 1.56 (m, ³*J* = 6.5 Hz, 2 H, CH₂), 1.06 (t, ³*J* = 6 Hz, 3 H, CH₃CH₂), 0.70 [d, ³*J* = 6.5 Hz, 6 H, CH(CH₃)₂].

¹³C NMR (100 MHz, CDCl₃): δ = 156.79 (s, CO), 145.82 (s, *tert*-C, CCH₃), 128.21 (s, CH), 117.40 (s, *tert*-C, CCH₂), 60.14 (s, NCH₂CH), 58.99 (s, OCH₂), 40.18 (s, CH₂NH), 30.44 [s, CH(CH₃)₂], 29.41 (s, CH₂), 20.67 (s, CCH₂), 19.68 [s, CH(CH₃)₂], 14.45 (s, CH₃CH₂), 11.40 (s, CH₃).

MS: $m/z = 268.4 (M + 1)^+$.

Ethyl 3-[1-(2-Hydroxyethyl)-3-methyl-1*H*-pyrazol-4-yl]propylcarbamate (21)

Yellow oil; yield: 82%.

¹H NMR (500 MHz, CDCl₃): δ = 7.12 (s, 1 H, CH), 5.56 (br s, 1 H, NH), 4.03 (t, ³*J* = 7.5 Hz, 2 H, NCH₂CH₂), 3.82 (m, 4 H, OCH₂, CH₂OH), 2.75 (br s, 1 H, OH), 2.62 (t, ³*J* = 7.5 Hz, 2 H, CH₂NH₂), 2.33 (t, ³*J* = 7.5 Hz, 2 H, CCH₂), 2.12 (s, 3 H, CH₃), 1.58 (m, ³*J* = 7.5 Hz, 2 H, CH₂), 1.06 (t, ³*J* = 6.5 Hz, 3 H, CH₃CH₂).

¹³C NMR (100 MHz, CDCl₃): δ = 156.66 (s, CO), 146.75 (s, *tert*-C, CCH₃), 128.94 (s, CH), 118.31 (s, *tert*-C, CCH₂), 61.15 (s, CH₂OH), 59.37 (s, OCH₂), 53.81 (s, NCH₂), 41.53 (s, CH₂NH₂), 34.13 (s, CH₂), 20.96 (s, CCH₂), 14.50 (s, CH₃CH₂), 11.62 (s, CH₃).

MS: $m/z = 256.5 (M + 1)^+$.

Ethyl 3-[3-Methyl-1-(pyridin-2-ylmethyl)-1*H*-pyrazol-4-yl]propylcarbamate (22)

The product was obtained as a hydrochloride from the aqueous phase as a yellow solid; yield: 83%; mp 169 °C (subl.).

¹H NMR (500 MHz, DMSO-*d*₆): δ = 8.81 (d, ³*J* = 5 Hz, 1 H, Py), 8.36 (t, ³*J* = 7 Hz, 1 H, Py), 7.83 (t, ³*J* = 6.5 Hz, 1 H, Py), 7.72 (s, 1 H, CH), 7.45 (d, ³*J* = 7.5 Hz, 1 H, Py), 7.11 (br s, 1 H, NH), 5.62 (s, 2 H, NCH₂Py), 3.95 (q, ³*J* = 7 Hz, 2 H, OCH₂), 2.97 (m, 2 H, CH₂NH), 2.32 (t, ³*J* = 7 Hz, 2 H, CCH₂), 2.06 (s, 3 H, CH₃), 1.59 (m, ³*J* = 7.5 Hz, 2 H, CH₂), 1.12 (t, ³*J* = 7 Hz, 3 H, CH₃CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 156.79 (s, CO), 153.25 (s, *tert*-C, Py), 147.41 (s, *tert*-C, CCH₃), 144.97 (s, Py), 143.8 (s, Py), 130.88 (s, CH), 125.91 (s, Py), 125.45 (s, Py), 119.38 (s, *tert*-C, CCH₂), 59.91 (s, OCH₂), 52.5 (s, NCH₂Py), 31.18 (s, CH₂NH), 30.47 (s, CH₂), 20.76 (s, CCH₂), 14.19 (s, CH₃CH₂), 11.78 (s, CH₃). MS: *m*/*z* = 303.3 (M + 1)⁺.

 $1015. mu_2 = 505.5 (101 + 1)$.

Aminopyrazoles 2, 23–30; General Procedure

A 1-necked 50-mL round-bottomed flask equipped with a reflux condenser was charged with a soln of the corresponding ethyl carbamate **5**, **15–22** (10 mmol) and concd HCl (25 mL). The soln was heated at reflux for 16 h. Thereafter, the soln was evaporated under reduced pressure to the corresponding crude aminopyrazole **2**, **23–30**. The product was washed with $CHCl_3$ (25 mL) and dried in vacuo.

Scale of the synthesis: 1–5 g of the corresponding pyrazole.

3-(3-Methyl-1-phenyl-1*H*-pyrazol-4-yl)propylamine Hydrochloride (2)

White solid; yield: 96%; mp >300 °C (dec.).

¹H NMR (500 MHz, DMSO- d_6): δ = 8.24 (s, 1 H, CH), 8.01 (br s, 3 H, NH₃⁺), 7.73 (d, ³J = 7.5 Hz, 2 H, Ph), 7.43 (t, ³J = 7.5 Hz, 2 H,

Ph), 7.21 (t, ${}^{3}J = 7.5$ Hz, 1 H, Ph), 2.80 (m, ${}^{3}J = 6$ Hz, 2 H, CH₂NH₂), 2.52 (t, ${}^{3}J = 7.5$ Hz, 2 H, CCH₂), 2.19 (s, 3 H, CH₃), 1.84 (m, ${}^{3}J = 7.5$ Hz, 2 H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 149.06 (s, *tert*-C, *C*CH₃), 137.70 (s, *tert*-C, Ph), 129.99 (s, 2 C, Ph), 129.79 (s, CH), 127.91 (s, Ph), 120.65 (s, *tert*-C, *C*CH₂), 119.90 (s, 2 C, Ph), 39.06 (s, CH₂NH₂), 27.16 (s, CH₂), 19.81 (s, CCH₂), 10.13 (s, CH₃).

MS: $m/z = 216.3 (M + 1)^+$.

3-[1-(2-Fluorophenyl)-3-methyl-1*H*-pyrazol-4-yl]propylamine Hydrochloride (23)

White solid; yield: 94%; mp 205-206 °C (subl.).

¹H NMR (500 MHz, DMSO- d_6): $\delta = 8.18$ (br s, 3 H, NH₃⁺), 7.92 (t, ³J_{H-F} = 8 Hz, 1 H, Ph), 7.73 (s, 1 H, CH), 7.37 (t, 1 H, Ph), 7.28 (m, 2 H, Ph), 3.41 (m, ³J = 7 Hz, 2 H, CH₂NH₂), 2.76 (t, ³J = 7.5 Hz, 2 H, CCH₂), 2.18 (s, 3 H, CH₃), 1.83 (m, ³J = 7 Hz, 2 H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 153.23 (d, ¹*J*_{C,F} = 198.10 Hz, CF), 148.94 (s, *tert*-C, *C*CH₃), 129.38 (s, Ph), 126.70 (s, *tert*-C, Ph), 126.31 (s, Ph), 125.01 (s, CH), 123.64 (s, *tert*-C, *C*CH₂), 120.63 (s, Ph), 116.66 (s, Ph), 40.39 (s, CH₂NH₂), 30.49 (s, CH₂), 20.94 (s, CCH₂), 11.81 (s, CH₃).

MS: $m/z = 234.4 (M + 1)^+$.

3-[1-(3-Chlorophenyl)-3-methyl-1*H*-pyrazol-4-yl]propylamine Hydrochloride (24)

White solid; yield: 95%; mp 210-212 °C (subl.).

¹H NMR (500 MHz, DMSO-*d*₆): δ = 8.37 (s, 1 H, CH), 8.19 (br s, 3 H, NH₃⁺), 7.82 (s, 1 H, Ph), 7.72 (d, ${}^{3}J$ = 7.5 Hz, 1 H, Ph), 7.44 (t, ${}^{3}J$ = 7.5 Hz, 1 H, Ph), 7.24 (d, ${}^{3}J$ = 7.5 Hz, 1 H, Ph), 2.79 (m, 2 H, CH₂)H₂), 2.52 (t, ${}^{3}J$ = 7.5 Hz, 2 H, CCH₂), 2.18 (s, 3 H, CH₃), 1.86 (m, ${}^{3}J$ = 7.5 Hz, 2 H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 149.60 (s, *tert*-C, *C*CH₃), 141.31 (s, *tert*-C, Ph), 134.41 (s, Ph), 131.63 (s, Ph), 126.89 (s, Ph), 125.32 (s, CH), 121.22 (s, *tert*-C, *C*CH₂), 117.49 (s, Ph), 116.29 (s, Ph), 38.71 (s, CH₂NH), 27.49 (s, CH₂), 20.65 (s, CCH₂), 12.22 (s, CH₃).

MS: $m/z = 250.6 (M + 1)^+$.

3-[1-(4-Chlorophenyl)-3-methyl-1*H*-pyrazol-4-yl]propylamine Hydrochloride (25)

White solid; yield: 94%; mp 211 °C (subl.).

¹H NMR (500 MHz, DMSO-*d*₆): δ = 8.28 (s, 1 H, CH), 8.16 (br s, 3 H, NH₃⁺), 7.75 (d, ³*J* = 8 Hz, 2 H, Ph), 7.45 (d, ³*J* = 8 Hz, 2 H, Ph), 2.78 (m, ³*J* = 6 Hz, 2 H, CH₂NH₂), 2.46 (t, ³*J* = 7.5 Hz, 2 H, CCH₂), 2.17 (s, 3 H, CH₃), 1.85 (m, ³*J* = 7.5 Hz, 2 H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 149.32 (s, *tert*-C, *C*CH₃), 138.96 (s, *tert*-C, Ph), 131.62 (s, Ph), 129.77 (m, 2 C, Ph), 126.7 (s, CH), 122.02 (s, *tert*-C, *C*CH₂), 119.48 (s, 2 C, Ph), 38.74 (s, CH₂NH₂), 27.53 (s, CH₂), 20.63 (s, *C*CH₂), 12.17 (s, CH₃).

MS: $m/z = 250.7 (M + 1)^+$.

3-[1-(1*H*-Benzimidazol-2-yl)-3-methyl-1*H*-pyrazol-4-yl]propylamine Hydrochloride (26)

White solid; yield: 95%; mp >300 °C (dec.).

¹H NMR (500 MHz, DMSO- d_6): $\delta = 8.58$ (s, 1 H, CH), 8.19 (br s, 4 H, NH, NH₃⁺), 7.53 (d, ³J = 6.5 Hz, 2 H, H-C₇H₆N₂), 7.28 (t, ³J = 6.5 Hz, 2 H, H-C₇H₅N₂), 3.17 (m, 2 H, CH₂NH₂), 2.81 (t, ³J = 6.5 Hz, 2 H, CCH₂), 2.28 (s, 3 H, CH₃), 1.87 (m, ³J = 6.5 Hz, 2 H, CH₂).

¹³C NMR (100 MHz, DMSO- d_6): $\delta = 156.77$ (s, tert-C, $C_7H_5N_2$), 141.32 (s, tert-C, CCH₃), 130.38 (s, tert-C, $C_7H_5N_2$), 129.45 (s, tert-C, $C_7H_5N_2$), 125.74 (s, CH), 125.36 (s, 2 C, $C_7H_5N_2$), 120.78 (s, tert-C, $C_7H_5N_2$), 120.78 (s, tert-C,

C, CCH₂), 113.59 (s, C₇H₅N₂), 109.11 (s, C₇H₅N₂), 39.12 (s, CH₂NH₂), 29.49 (s, CH₂), 20.68 (s, CCH₂), 12.21 (s, CH₃). MS: m/z = 256.4 (M + 1)⁺.

3-(1,3-Dimethyl-1*H*-pyrazol-4-yl)propylamine Hydrochloride (27)

White solid; yield: 92%; mp 243 °C (subl.).

¹H NMR (500 MHz, DMSO-*d*₆): δ = 8.22 (br s, 3 H, NH₃⁺), 7.67 (s, 1 H, CH), 3.78 (s, 3 H, NCH₃), 2.72 (m, 2 H, C*H*₂NH₂), 2.41 (t, ³*J* = 7 Hz, 2 H, CCH₂), 2.14 (s, 3 H, CH₃), 1.76 (m, ³*J* = 7 Hz, 2 H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 146.39 (s, *tert*-C, *C*CH₃), 129.32 (s, CH), 118.33 (s, *tert*-C, *C*CH₂), 40.67 (s, CH₂NH₂), 39.66 (s, NCH₃), 30.57 (s, CH₂), 20.87 (s, CCH₂), 11.73 (s, CH₃).

MS: $m/z = 154.1 (M + 1)^+$.

3-(1-Isobutyl-3-methyl-1*H*-pyrazol-4-yl)propylamine Hydrochloride (28)

White solid; yield: 92%; mp 164 °C.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 7.79$ (br s, 3 H, NH₃⁺), 7.20 (s, 1 H, CH), 3.77 (d, ³*J* = 6.5 Hz, 2 H, NCH₂CH), 2.73 (m, 2 H, CH₂NH₂), 2.52 [m, 1 H, CH(CH₃)₂], 2.38 (t, ³*J* = 7 Hz, 2 H, CCH₂), 2.14 (s, 3 H, CH₃), 1.72 (m, ³*J* = 7 Hz, 2 H, CH₂), 0.81 [d, ³*J* = 6.5 Hz, 6 H, CH(CH₃)₂].

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 146.82 (s, *tert*-C, *C*CH₃), 127.21 (s, CH), 117.42 (s, *tert*-C, *C*CH₂), 60.34 (s, NCH₂CH), 40.48 (s, CH₂NH₂), 30.62 [s, CH(CH₃)₂], 30.10 (s, CH₂), 20.63 (s, CCH₂), 19.71 [s, CH(CH₃)₂], 11.40 (s, CH₃).

MS: $m/z = 196.5 (M + 1)^+$.

2-[4-(3-Aminopropyl)-3-methyl-1*H*-pyrazol-1-yl]ethanol Hydrochloride (29)

White solid; yield: 97%; mp 74 °C.

¹H NMR (500 MHz, CDCl₃): δ = 7.12 (s, 1 H, CH), 4.03 (t, ³*J* = 7.5 Hz, 2 H, NCH₂CH₂), 3.83 (d, ³*J* = 7.5 Hz, 2 H, CH₂OH), 2.75 (br s, 3 H, OH, NH₃⁺), 2.61 (t, ³*J* = 7.5 Hz, 2 H, CH₂NH₂), 2.33 (t, ³*J* = 7.5 Hz, 2 H, CCH₂), 2.12 (s, 3 H, CH₃), 1.58 (m, ³*J* = 7.5 Hz, 2 H, CH₂).

¹³C NMR (100 MHz, CDCl₃): δ = 146.72 (s, *tert*-C, *C*CH₃), 128.90 (s, CH), 118.29 (s, *tert*-C, *C*CH₂), 61.16 (s, CH₂OH), 53.84 (s, NCH₂), 41.51 (s, CH₂NH₂), 34.03 (s, CH₂), 20.97 (s, CCH₂), 11.62 (s, CH₃).

MS: $m/z = 184.2 (M + 1)^+$.

3-[3-Methyl-1-(pyridin-2-ylmethyl)-1*H*-pyrazol-4-yl]propylamine Hydrochloride (30)

White solid; yield: 95%; mp >300 °C (dec.).

¹H NMR (500 MHz, DMSO- d_6): $\delta = 8.75$ (d, ${}^{3}J = 5$ Hz, 1 H, Py), 8.25 (t, ${}^{3}J = 7$ Hz, 1 H, Py), 8.14 (br s, 3 H, NH₃⁺), 7.72 (m, 2 H, Py, CH), 7.38 (d, ${}^{3}J = 6.5$ Hz, 1 H, Py), 5.55 (s, 2 H, NCH₂Py), 2.75 (m, 2 H, CH₂NH₂), 2.41 (t, ${}^{3}J = 7$ Hz, 2 H, CCH₂), 2.07 (s, 3 H, CH₃), 1.77 (m, ${}^{3}J = 7$ Hz, 2 H, CH₂).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 154.25 (s, *tert*-C, Py), 147.56 (s, *tert*-C, CCH₃), 145.65 (s, Py), 142.91 (s, Py), 129.34 (s, CH), 125.37 (s, Py), 124.85 (s, Py), 119.44 (s, *tert*-C, CCH₂), 52.52 (s, NCH₂Py), 39.44 (s, CH₂NH₂), 30.89 (s, CH₂), 20.76 (s, CCH₂), 11.78 (s, CH₃).

MS: $m/z = 231.2 (M + 1)^+$.

References

(1) Elguero, J.; Goya, P.; Jagerovic, N.; Silva, A. M. S. *Targets Heterocycl. Syst.* **2002**, *6*, 52; and references therein.

Synthesis 2010, No. 11, 1781-1786 © Thieme Stuttgart · New York

- (2) (a) Singer, R. A.; Caron, S.; McDermott, R. E.; Arpin, P.; Do, N. M. Synthesis 2003, 1727. (b) Singer, R. A.; Dore, M.; Sieser, J. E.; Berliner, M. A. Tetrahedron Lett. 2006, 47, 3727.
- (3) (a) Quin, L. D.; Pinion, D. O. J. Org. Chem. 1970, 35, 3134.
 (b) Bajnati, A.; Huber-Habart, M. Bull. Soc. Chim. Fr. 1988, 3, 540. (c) Quan, P. M.; Quin, L. D. J. Org. Chem. 1966, 31, 2487. (d) Wenkert, E.; Moeller, P.; Pietre, S. J. Am. Chem. Soc. 1988, 110, 7188. (e) Wenkert, E.; Hudlicky, T. J. Org. Chem. 1968, 33, 747. (f) Quin, L. D.; Pinion, D. O. J. Org. Chem. 1970, 35, 3130. (g) Wenkert, E.; Dave, K.; Haglid,

F.; Lewis, R.; Oishi, T.; Stevens, R.; Terashima, M. J. Org. Chem. **1968**, *33*, 747. (h) Lei, A.; Chan, M.; He, M.; Zhang, X. Eur. J. Org. Chem. **2006**, *19*, 4343.

(4) (a) Okada, E. *Heterocycles* 1992, 34, 791. (b) Menozzi, G.; Mosti, L.; Schenone, P. J. *Heterocycl. Chem.* 1987, 24, 1669. (c) Dehayes, C.; Chabannet, M.; Gelin, S. *Synthesis* 1982, 1088. (d) Dehayes, C.; Chabannet, M.; Gelin, S. J. *Heterocycl. Chem.* 1984, 21, 301. (e) Golovinsky, E. V.; Spassova, M. K.; Zakharieva, R. D. Z. *Chem.* 1980, 20, 95. (f) Bajnati, A. *Bull. Soc. Chim. Fr.* 1988, 3, 540.