

Tetrahedron Letters 42 (2001) 1375-1377

TETRAHEDRON LETTERS

Diastereoselective opening of trisubstituted epoxy alcohols: application in the synthesis of (+)-prelactone C

Tushar K. Chakraborty* and Subhasish Tapadar

Indian Institute of Chemical Technology, Hyderabad 500 007, India Received 25 October 2000; revised 27 November 2000; accepted 6 December 2000

Abstract—A novel method developed by us for the synthesis of chiral 2-methyl-1,3-diols by radical-mediated diastereoselective opening of trisubstituted epoxy alcohols at the more substituted carbon was the key step in the synthesis of (+)-prelactone C (1). © 2001 Published by Elsevier Science Ltd.

Small and medium ring lactones, essential structural components of a large number of organic natural products, are attracting a lot of attention as organic chemists develop new methodologies for their synthesis.^{1–3} Prelactones 1–5 constitute an important class of highly functionalized chiral δ -lactones isolated from various polyketide macrolide producing microorganisms.^{4–7} They seem to be the wild-strain-derived compounds representing early steps of the polyketide

biosynthesis pathway.⁸ Their production can actually be stimulated under certain conditions.⁹ The discovery of these molecules supports the widely accepted hypothesis of step by step functionalization of growing polyketide chains in the biosynthesis of macrolides.¹⁰ A general strategy for the synthesis of these prelactones will prepare material for use as standards during the mechanistic studies of the polyketide synthases.

Me

^{*} Corresponding author.

^{0040-4039/01/\$ -} see front matter @ 2001 Published by Elsevier Science Ltd. PII: S0040-4039(00)02247-4

In this paper, we describe the total synthesis of (+)prelactone C (1).^{6,11-13} The key feature in our synthesis is the application of an excellent method developed by us recently¹⁴ for the synthesis of chiral 2-methyl-1,3diols by radical-mediated anti-Markovnikov opening of trisubstituted epoxy alcohols at the more substituted carbon, using cp₂TiCl in the presence of cyclohexa-1,4diene (which acts as a donor of hydrogen atoms) to construct the three stereocentres of $1.^{15-18}$ According to our study, as shown in Scheme 1, both syn and anti epoxy alcohols, 6 and 7, respectively, on epoxide ring opening with cp₂TiCl-cyclohexa-1,4-diene should give syn,syn-diol 8 as the major product, whereas the products from epoxy alcohols 9 and 10 depend on the relative sizes of \hat{R}^1 and R^2 . When R^1 is bigger than R^2 , the major product is the *anti,syn* diol **11**. With smaller \mathbf{R}^1 , the syn, anti product **12** predominates. Based on this scheme, we decided to use the anti epoxy alcohol 13 as the precursor for the stereoselective synthesis of the crucial '2-methyl-1,3-diol' moiety of the C_3-C_5 segment 14 of the molecule. As the BnOCH₂ substituent is bigger than CH₂CH₂OTBDPS, the epoxy alcohol 13 was expected to deliver the anti,syn stereoisomer 14 on ring opening.

The actual synthesis is outlined in Scheme 2. The allylic alcohol **16** was prepared from the aldehyde **15** in 55%

overall yield in three steps following the procedure reported by us earlier¹⁷—addition of the Li-enolate of ethyl acetate to the aldehyde **15**, LAH reduction to obtain the diol, and finally selective protection of the primary hydroxyl as a *tert*-butyldiphenylsilyl (TBDPS) ether. Sharpless kinetic resolution¹⁹ of **16** with unnatural diethyl D-(–)-tartrate gave the chiral epoxy alcohol **13** in 40% yield. While the enantiomeric outcome of the reaction is yet to be determined, the diastereoisomeric purity of the product **13** was ascertained on the basis of ¹H NMR studies and subsequently verified after two steps: opening up of the epoxide ring and making an acetonide from the resulting diol.

To carry out the crucial epoxide ring opening reaction, the epoxy alcohol **13** was subjected to cp_2TiCl , generated in situ according to the procedure reported by us earlier, and cyclohexa-1,4-diene.¹⁴ The diastereoisomer **14** was formed as the major product in a 6:1 ratio, as determined by ¹H NMR spectroscopy of the mixture, in 80% yield. The mixture of diols was next converted to the acetonides in 96% yield. The major isomer **17** was separated from the mixture by standard silica gel column chromatography.²⁰ The ¹³C NMR spectrum of **17** showed acetonide methyl signals at δ 25.1 and 24.0 and that of ketal carbon at 100.6 ppm, proving a 3,5-*anti* relationship.^{21,22} Debenzylation of **17** was fol-

Scheme 2. Stereoselective synthesis of (+)-prelactone C (1).

lowed by oxidation using the SO₃-pyridine complex giving the aldehyde 18 in 95% yield. Olefination of the aldehyde 18 with stabilized ylide Ph₃P=CHCO₂Et gave the (E)- α , β -unsaturated ester **19** in 94% yield. The ester function was transformed into a methyl group to furnish 20 in three steps in 80% overall yield—DIBAL-H reduction to an allylic alcohol, mesylation, followed by reduction of the mesylate with lithium triethyl borohydride. Next, desilylation of 20 gave the primary alcohol 21 in 96% yield. The hydroxyl group in 21 was oxidized to the methyl ester 22 in three steps in 90% yield—oxidation using the SO₃-pyridine complex to the aldehyde, subsequent oxidation of the aldehyde using sodium chlorite, followed by esterification with CH₂N₂. Acid treatment of the ester 22 deprotected the acetonide ring with concomitant cyclization furnishing the targeted prelactone 1 in 80% yield.

Our synthetic prelactone C showed rotation $[\alpha]_D^{20} + 37.8$ (*c* 0.7, MeOH); lit.⁶ value: $[\alpha]_D^{20} + 57.6$ (*c* 0.5, MeOH). The lower specific rotation of the final product reflects the moderate enantiomeric excess obtained in the Sharpless kinetic resolution step ($16 \rightarrow 13$), a phenomenon often encountered with trisubstituted epoxy alcohols.²³ Efforts are now underway to standardize the reaction conditions of the resolution step to improve the enantioselectivity of the product. The spectroscopic data of our synthetic product^{24,25} were identical with those of the naturally occurring prelactone C.⁶

In conclusion, the synthesis demonstrates the practical utility of the radical-mediated opening of trisubstituted epoxy alcohols to construct an important structural moiety consisting of 2-methyl-1,3-diol framework that appears in various propionate-derived polyketides. The methodology can be successfully employed in the synthesis of many natural products.

Acknowledgements

The authors wish to thank Drs. A. C. Kunwar and M. Vairamani for NMR and mass spectroscopic assistance, respectively; CSIR, New Delhi for research fellowship (S.T.) and Young Scientist Award Research Grant (T.K.C.).

References

- Elliot, M. C. J. Chem. Soc., Perkin Trans. 1 2000, 1291– 1318.
- 2. Rousseau, G. Tetrahedron 1995, 51, 2777-2849.
- 3. Laduwahetty, T. Contemp. Org. Syn. 1995, 2, 133-149.

- Cortes, J.; Wiesman, K. E. H.; Roberts, G. A.; Brown, M. J. B.; Staunton, J.; Leadlay, P. F. *Science* 1995, 268, 1487–1489.
- Kao, C. M.; Luo, G.; Katz, L.; Cane, D. E.; Khosla, C. J. Am. Chem. Soc. 1994, 116, 11612–11613.
- Bindseil, K. U.; Zeeck, A. Helv. Chim. Acta 1993, 76, 150–157.
- Gerlitz, M.; Hammann, P.; Thiericke, R.; Rohr, J. J. Org. Chem. 1992, 57, 4030–4033.
- 8. Khosla, C.; Gokhale, R. S.; Jacobsen, J. R.; Cane, D. E. *Ann. Rev. Biochem.* **1999**, *68*, 219–253 and references cited therein.
- 9. Boddien, C.; Gerber-Nolte, J.; Zeeck, A. *Liebigs Ann. Chem.* **1996**, 1381–1384.
- O'Hagen, D. In *The Polyketide Metabolites*; O'Hagen, D., Ed.; Ellis Horwood: New York, 1991; pp. 116–137.
- 11. For earlier syntheses of prelactones see Refs. 12 and 13.
- 12. Hanefeld, U.; Hooper, A. M.; Staunton, J. Synthesis 1999, 401-403.
- Esumi, T.; Fukuyama, H.; Oribe, R.; Kawazoe, K.; Iwabuchi, Y.; Irie, H.; Hatakeyama, S. *Tetrahedron Lett.* 1997, *38*, 4823–4826.
- 14. Chakraborty, T. K.; Dutta, S. J. Chem. Soc., Perkin Trans. 1 1997, 1257–1259.
- 15. For earlier works on the application of our method in the synthesis of natural products, see Refs. 16–18.
- 16. Chakraborty, T. K.; Dutta, S. *Tetrahedron Lett.* **1998**, *39*, 101–104.
- 17. Chakraborty, T. K.; Das, S. J. Ind. Chem. Soc. 1999, 611–616.
- 18. Chakraborty, T. K.; Das, S. Chem. Lett. 2000, 80-81.
- Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–5780.
- 20. The minor isomer could be separated more easily after the debenzylation step.
- 21. Rychnovsky, S. D.; Rogers, B. N.; Richardson, T. I. Acc. Chem. Res. 1998, 31, 9–17.
- 22. Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099–7102.
- 23. Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1-299.
- 24. All new compounds were characterized by IR, ¹H and ¹³C NMR and mass spectroscopic studies.
- 25. Selected physical data of 1. $R_f = 0.5$ (silica, 70% EtOAc in petroleum ether); $[\alpha]_{20}^{20} + 37.8$ (*c* 0.7, MeOH); IR (neat): v_{max} 3400, 2925, 1730, 1225 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 5.79 (ddq, J = 15.2, 6.6, 1 Hz, 1H, C7-H), 5.43 (ddq, J = 15.2, 8.2, 2 Hz, 1H, C6-H), 4.17 (dd, J = 10.4, 8.2 Hz, 1H, C5-H), 3.74 (ddd, J = 8, 7, 5.8 Hz, 1H, C3-H), 3.07 (br s, 1H, OH), 2.87 (dd, J = 17, 5.8 Hz, 1H, C2-H), 2.46 (dd, J = 17, 8 Hz, 1H, C2-H'), 1.77 (dd, J = 6.6, 2 Hz, 3H, C8-H₃), 1.64 (ddq, J = 10.4, 7, 6.8 Hz, 1H, C4-H), 1.02 (d, J = 6.8 Hz, 3H, C4-CH₃); ¹³C NMR (125 MHz, CDCl₃): δ 170.34, 132.41, 127.61, 84.11, 69.53, 41.49, 39.08, 17.62, 13.66; MS (EI): m/z 153 [M⁺+ H–H₂O].