TABLE I N-[(4-Tolylsulfonyl)carbamoyl]amino Acids RCHCO₂H

NHCONHSO₂C₆H₄CH₃-4

			crystn	fied			~		_		
			sol-	yield,		Calcd, %			Found, %		
No.	R	Mp, °C	vent^a	%	Formula	C	H	N	$^{\rm C}$	H	N
1	H_{ρ}	199-201	\mathbf{A}	47	${ m C_{10}H_{12}N_2O_5S}$	44.11	4.44	10.29	43.86	4.79	9.96
2	CH_3	177–178	A-B	23	${ m C_{11}H_{14}N_2O_5S}$	46.15	4.93	9.79	46.49	5.07	9.64
3	$(CH_3)_2CH$	177 - 178	A-B	55	$C_{13}H_{18}N_2O_5S$	49.68	5.77	8.91	49.89	5.81	9.02
4	$\mathrm{C_6H_5CH_2}$	180-182	A-B	31	$\mathrm{C_{17}H_{18}N_{2}O_{5}S}$	56.34	5.01	7.73	56.19	5.26	7.45
5	CH_2	189-190	C	23	$\mathrm{C_{19}H_{19}N_3O_{5}S}$	56.85	4.77	10.47	56.88	4.93	10.67
6	$H_2N(CH_2)_4 $ NH	173–175	D	14	$C_{14}H_{21}N_3O_5S\cdot 0.5H_2O$	47.71	6.29	11.92	48.01	6.26	11.68
7	$H_2NCNH(CH_2)_3$	189-190	В	22	$C_{14}H_{21}N_5O_5S \cdot 0.5H_2O$	44.20	5.83	18.41	44.35	6.05	18.50
8	$\mathrm{HO_2C}(\mathrm{CH_2})_2$	178 - 179	В	59€	$C_{13}H_{16}N_2O_7S$	45.34	4.68	8.14	45.35	4.64	8.21
$reve{9}$	d	131 - 132	A-B	47	$C_{14}H_{20}N_2O_5S$	51.21	6.14	8.53	51.09	6.18	8.59
		~ 11 7		OTT 1							

^a A = ethanol, B = water, C = dissolved in NaOH and reprecipitated with HCl, D = methanol-water-ether. ^b Identical with the compound prepared by alkaline hydrolysis of N-[(4-tolylsulfonyl)carbamoyl]glycine ethyl ester.3 ° In this case the ester was employed as indicated in the Experimental Section. ^d The compound is N-[(4-tolylsulfonyl)carbamoyl]-6-aminocaproic acid.

analytical sample was prepared by recrystallizing a small portion of the solid twice from ethyl acetate and benzene; mp 139-141°. Anal. Calcd for C₂₂H₂₇N₃O₇S: C, 55.34; H, 5.70; N, 8.80.

Found: C, 55.62; H, 5.92; N, 8.88.

 $N^2\text{-}[(4\text{-Tolylsulfonyl}) carbamoyl] lysine (6).—The crude <math display="inline">N^\epsilon\text{-}$ benzyloxycarbonyl-N2-[(4-tolylsulfonyl)carbamoyl]lysine (9.0 g), prepared above, was dissolved in a mixture of 200 ml of methanol and 50 ml of water containing 1 ml of glacial acetic acid. The mixture was shaken with $0.8~\mathrm{g}$ of $10\%~\mathrm{Pd-C}$ in a Parr apparatus until 1 mole of hydrogen/mole of compound was absorbed (1 hr). The mixture was filtered, the filtrate was evaporated in vacuo to almost dryness, and acetone was added to yield a white solid which was dried to give 3.7 g of product, mp 170°. Recrystallization from methanol-water-ether yielded 1.9 g, mp 173-175°. Further recrystallization did not raise the melting point.

N-[(4-Tolylsulfonyl)carbamoyl]glutamic Acid (8).—A mixture of 0.046 mole (11.1 g) of L-glutamic acid diethyl ester hydrochloride^{7b} and 0.02 mole (4.3 g) of 4-tolylsulfonylurea was heated at 100–110° for 3.0 hr. The resulting oil was taken up in 150 ml of water, extracted with three 75-ml portions of ether, dried (Drierite), and evaporated to give an oil. The oil was taken up with 1 N Na₂CO₃ and extracted with ether. The aqueous layer was acidified with 3 N HCl and extracted with ether, and the ether was evaporated to give an oil which, upon treatment with water, yielded 13.4 g of a solid. The solid was treated with 100 ml of a 10% ethanolic KOH solution at 0° and then allowed to stand overnight at room temperature. The mixture was concentrated in vacuo, the residue was dissolved in 100 ml of water and acidified to congo red with concentrated HCl to yield a solid. The solid was dissolved in a saturated K₂CO₃ solution, reprecipitated with 3 N HCl, and recrystallized from water to give 4.1 g of product, mp 178-179°. Further recrystallization did not raise the melting point.

Substituted 2-Phenoxypropionic and -butyric Acids and Derivatives

E. MAGNIEN, F. TESTA, AND S. L. SHAPIRO

U. S. Vitamin and Pharmaceutical Corporation, Yonkers, New York 10701

Received January 26, 1966

We have prepared a series of α -phenoxy-substituted propionic and butyric acid derivatives. Among the derivatives are the esters, acids, hydroxamates, and amides. These compounds were tested for possible use as hypocholesteremic agents. Some of these compounds had moderate activity in lowering of serum cholesterol in guinea pigs. The most active compounds were 8, 12, 13, 17, 37, 39, 43, and 51 (Table I).

Experimental Section¹

Preparation of Esters and Acids.—The esters were prepared by refluxing equimolar amounts of the phenol, α-bromo ester, and K₂CO₃ in acetone. The esters were obtained by vacuum distillation. The acids were obtained by hydrolysis of the esters in refluxing 2 N NaOH for 1 hr followed by neutralization and filtration of the insoluble acids.

The amides were prepared by three methods.

Method 1. N-(4-Carbethoxy)phenyl-2-o-allylpropionamide (9).—To a solution of 6.6 g (0.04 mole) of ethyl p-aminobenzoate in 30 ml of dry ether was added 4.5 g (0.02 mole) of 2-o-allylphenoxypropionyl chloride while maintaining the solution at 0°. After 2 hr, the amine hydrochloride was filtered off. The filtrate was evaporated to dryness and the product distilled to obtain 3.2 g of bp 212–214° (0.03 mm), n^{20} D 1.5714.

Method 2. N-(4-Pyridyl)-2-o-phenylphenoxybutyramide (51). A mixture of 2.5 g (0.01 mole) of 2-o-phenylphenoxybutyric acid, 0.94 g (0.01 mole) of 4-aminopyridine, and 2.1 g (0.01 mole) of dicyclohexylcarbodiimide in 40 ml of acetonitrile was stirred for 3 hr at 25°, then allowed to stand overnight. The dicyclohexylurea $(2.3~{\rm g})$ was filtered off, and the filtrate was evaporated to dryness in vacuo. The amber-colored residue was dissolved in dry ether, and excess HCl was passed into the solution. The crude hydrochloride (2.0 g) was crystallized from ethanol–ether to give 1.6 g, mp 176–178°.

Method 3. \hat{N} -Methyl-N'-2- ρ -allylphenoxypropionylpiperazine (12).—A mixture of 7.0 g (0.03 mole) of ethyl 2-o-allylphenoxypropionate, $3.0~\mathrm{g}~(0.03~\mathrm{mole})$ of N-methylpiperazine, and $0.1~\mathrm{g}$ of sodium in 2 ml of ethanol was refluxed until no more ethanol was removed in a Dean-Stark trap (approximately 2 hr). ture was cooled and partitioned between ether and 3 N HCl. The water extract was saturated with K₂CO₃, and the product was extracted into ether. After removal of the ether, the product was distilled to yield 4.9 g of material with bp 142-144° (0.04 mm). This product solidified on standing and was crystallized from hexane to yield 2.3 g, mp 84-88°.

2-o-Allylphenoxybutyrohydroxamic Acid (14).—A solution containing 0.02 mole of hydroxylamine was prepared from 1.39 g (0.02 mole) of hydroxylamine hydrochloride and 0.46 g (0.02 g-atom) of sodium in 50 ml of ethanol. After removal of the NaCl, 2.48 g (0.01 mole) of ethyl 2-o-allylphenoxybutyrate was added. The solution was allowed to stand at room temperature for 40 days. The solvent was removed in vacuo leaving a solid residue of 2.5 g, mp 111-118°. Two crystallizations from ethyl acetate-hexane gave analytically pure material of mp 127-128°.

⁽¹⁾ Melting points were determined on a calibrated Fisher-Johns appara-Elemental analyses were determined by Drs. Weiler and Strauss, Oxford, England.

Table I
Phenoxy Derivatives

$$\begin{array}{c}
R_1 \\
H \\
OCCOR_3 \\
R_2
\end{array}$$

						Re-							
No.	R_1	R_2	R_{δ}	Yield,	Bp (mm) or mp, °C	crystn solvent ^a	Formula	C	aled, %— H	N	C C	ound, 9 H	N
1	$CH_2CH = CH_2$	CH_3	OH	63	57	Π	$C_{12}H_{14}O_3$	69.88	6.84		69.86	6.67	
2	CH ₂ CH=CH ₂	CH_3	OC_2H_5	75	62 (0.02)		$C_{14}H_{18}O_3$	71.77	7.74		71.96		
3	CH ₂ CH⇒CH ₂	CH ₃	NHOH	41	76-77	13-H	$\mathrm{C}_{12}\mathrm{H}_{15}\mathrm{NO}_{3}$	65.14		. 33	64.52	6.73	6.20
4 5	$CH_2CH = CH_2$ $CH_2CH = CH_2$	CH ₃	NH ₂	85	136-140 (0.2)	1 "	$C_{12}H_{15}NO_2$	70.22		. 82	70.48		6.99
6	CH ₂ CH==CH ₂ CH ₂ CH==CH ₂	CH₃ CH₃	NHCH ₃ NH- <i>n</i> -C ₅ H ₁₁	93	52-57	H	C ₁₃ H ₁₇ NO ₂			. 39 . 09	71.45	9.17	6.03 5.09
7	CH ₂ CH==CH ₂	CH ₃	NHCHC ₆ H ₄ CH ₂ C ₆ H ₅	58 99	130-132 (0.15) 101-105	E	$C_{17}H_{2b}NO_2$ $C_{26}H_{27}NO_2$	$74.14 \\ 81.01$. 63		7,10	
8	CH ₂ CH=CH ₂	CH ₃	NHCH2COOC2H5	92	160-162 (0.15)	1.7	C16 H21 NO4			.81		7.37	4.91
9	$CH_2CH==CH_2$	$\mathrm{CH_3}$	NHC ₆ H ₄ COOC ₂ H ₅	45	212-214 (0.03)		C21H23NO4	71.37		.96	71.24		
10	$\mathrm{CH}_2\mathrm{CH}{=\!\!\!=}\mathrm{CH}_2$	CH3	-N_O	62	154-156 (0.05)		$C_{16}H_{21}NO_{8}$	69.79	7.69 5.	. 09	69.43	7.83	5.16
1 [$\mathrm{CH_2CH}{=}\mathrm{CH_2}$	$ m CH_3$	$NIINH_2$	11	71-72	Et-H	$C_{12}H_{16}N_{2}O_{2}$	65.43	7.32 12.	.72	65.78	7.31	12.60
12	$\mathrm{CH}_{2}\mathrm{CH}\!\!=\!\!\mathrm{CH}_{2}$	CH ₃	-N_NCH,	57	84-88	Н	${ m C}_{17}{ m H}_{24}{ m N}_2{ m O}_2$	70.80	8.39 9	.71	70.82	8.41	9.88
13	$CH_2CH==CH_2$	C_2H_{δ}	OH	88	51	\mathbf{H}	$C_{13}H_{16}O_3$	70.89	7.32		71.14	7.30	
14	$CH_2CH=CH_2$	C_2H_5	NHOH	99	127-128	Ea	$C_{18}H_{17}NO_3$	66.36		.95	66.17	7.24	6.17
15	$CH_2CH=CH_2$	C_2H_5	NH_2	99	58-60	P	$C_{18}H_{17}NO_{2}$	71.20		. 39	71.52		
16	CH₂CH≔CH₂	C_2H_5	NHCH ₃	99	48-50	P	$C_{14}H_{19}NO_2$	72.07		.00	71.76	8.21	
17 18	$CH_2CH=CH_2$ $CH_2CH=CH_2$	C ₂ H ₅	$N(C_2H_5)_2$	40	142-146 (0.02)	r)	C ₂₇ H ₂₅ NO ₂	74.14		. 09 . 84	74.17 74.58	$9.47 \\ 9.46$	
19	$CH_2CH = CH_2$ $CH_2CH = CH_2$	$C_2H_{f 5}$ $C_2H_{f 5}$	NH - n - C_6H_{11} $NHCHC_6H_4CH_2C_6H_6$	69 99	52-55 104-106	P Et-M	C ₁₅ H ₂₇ NO ₂ C ₂₇ H ₂₉ NO ₂	$74.70 \\ 81.17$.51		7.30	
20	$CH_2CH=CH_2$	C ₂ H ₈	NHCH2CH2OH	98	65-66	E-P	C ₁₀ H ₂₁ NO ₂	68.41		.32	68.33	8.22	
21	CH ₂ CH=CH ₂	C ₂ H ₅	NHCH2COOC2H5	49	173-175 (0.1)		C ₁₇ H ₂₃ NO ₄	66.86		. 59	67.23		4.48
22	$CH_2CH=CH_2$	C_2H_{δ}	$\mathrm{NHC_6H_4COOC_2H_5}$	77	228-232 (0.08)		$C_{22}H_{26}NO_4$		6.86 3	.81	71.76	6.78	3.95
23	CH₂CH≔CH₂	$C_2\Pi_5$	-N()	74	166-168 (0.03)		$C_{47} H_{23} N \Theta_{5}$	70.56	8.01 4.	. 84	70.62	8.12	4.74
24	$CH_2CH=CH_2$	C_2H_5	$NHNH_2$	24	173-177 (0.02)		$C_{18}H_{18}N_2O_2$	66.64	7.74 11.	. 96	66.83	7.75	11.79
25	$CH_2CH=CH_2$	C_2H_5	$NHCH_2CH_2N(C_2H_5)_2$	64	168-170 (0.02)		$C_{19}H_{30}N_2O_2$		9.50 8.		71.44	9.46	
26	$CH_2CH \rightleftharpoons CH_2$	C_2H_5	$\mathrm{NH}(\mathrm{CH_2})_3\mathrm{N}(\mathrm{CH_3})_2$	51	160-162 (0.08)		$C_{18}H_{28}N_2O_3$	71.01	9.27 9.	. 20	71.31	9.26	8.89
27	CH ₂ CH=CH ₂	$\mathrm{C_2H_5}$	$-N$ $NCH_2C_6H_3-2,4-Cl_2$	59	148-150 (HCl)	Еа-Е	$\mathrm{C}_{24}\mathrm{H}_{29}\mathrm{Cl}_3\mathrm{N}_2\mathrm{O}_2$	59.57	6.04 5.	. 79	59.86	6,45	5.73
28	C_6H_5	CH_3	ОН	81	138	В	$C_{15}H_{14}O_3$	74.36	5.83		74.63	6.16	
29	C_6H_5	$\mathrm{CH_3}$	NII2	99	94-97	Еа-Н	$C_{15}H_{14}NO_{0}$	74.66		. 81		6.66	
30	C ₆ H ₅	CH_3	NHOH	8	75-82	H	$C_{15}H_{15}NO_3$	70.02		.44	70.09	5.79	
31	C ₆ H ₅	CH ₃	NHCH8	99	64-65	Н-Еа	C ₁₆ H ₁₇ NO ₂	75.27		.49	75.72	6.77	5.77
32	C ₆ II ₅	CH ₃	NHCH2COOC2H5	45	196-200 (0.2)		$C_{19}H_{21}NO_4$	69.70	6.47 4	. 20	69.85		
33	C ₆ H ₅	СНз	-N_O	99	98-100	E	$C_{19}H_{21}NO_3$	73.29	6.80 4.	. 50	73.73	6.56	4.23
34	C ₆ H ₅	CH ₃	NHCH2CH2N(C2H5)2	10	76-79 (HCl)	Е	C21H29ClN2O2h		7.75 7.		66.42	$7.93 \\ 7.96$	$\frac{7.05}{8.45}$
35	C ₆ II ₅	СН3	NH(CH ₂) ₃ N(CH ₃) ₂	34	76-78	Р	$C_{20}H_{26}N_2O_2$	73.59	8.03 8.	. 28	73.67	1.90	0.40
36	C_6H_{δ}	CH ₃	-NH-N	45	166-168 (HCl)	EtE	$C_{20}H_{19}ClN_2O_2$	67.70	5.40 7.	. 90	67.89	5.41	7.77
37	C_bH_b	C_2H_{δ}	OH	87	149-149.5	Et+W	$C_{16}H_{16}O_{3}$	74.98	6.29		74.80	6.57	
38	C ₆ H ₅	C_2H_6	OC2H5	82	143-148 (0.2)		C ₁₈ H ₂₀ O ₂	76.03			76.43		
39	C ₆ H ₅	C_2H_6	NHOH	99	131-132	E	$C_{16}H_{17}NO_{3}$	70.83	6.32 5.	.16	71.14	6.29	4.97
40	C_6H_b	C_2H_δ	NH_2	99	105-107	Ea-H	$C_{16}H_{17}NO_{2}$	75.27		. 49	74.90	6.65	
41	C ₆ H ₅	C_2H_5	NHCII3	52	102-105	Ea	C ₁₇ H ₁₉ NO ₂	75.81		.20	75.97	6.90	
42	C ₆ H ₆	C_2H_5	NHC ₂ H ₅	57	132-136 (0.03)	D 11	C18H21NO:	76.29		.94	76.33		$\frac{4.52}{4.66}$
43 44	C ₆ H ₅ C ₆ II	C_2H_5 C_2H_5	NH(C ₂ H ₅) ₂	99 55	57-59 190-192 (0.2)	В-Н	$C_{20}H_{25}NO_2$ $C_{21}H_{27}NO_2$	77,13 $77,50$. 50 . 30	$76.78 \\ 77.20$	8.00	$\frac{4.66}{3.86}$
45	C ₆ H ₅	C ₂ H ₅	NH-n-C _b H ₁₁ NHCH ₂ CH ₂ C ₆ H ₅	55 75	212-214 (0.15)		C24H25NO2	80.19		. 90	79.95	6.83	4.37
46	C ₆ H ₅	C ₂ H ₅	NHCHC6H4CH2C6H6	55	240 (0.05), 94-95	11	C ₈₀ H ₂₉ NO ₂	82.72		. 22	82.64	6.48	
47	C_6H_6	C_2H_{δ}	NHCH2CH2OH	63	202-204 (0.002)		$C_{18}H_{21}NO_3$	72.21	7.07 4.	. 68	72.15		4.81
48	C_6H_5	C_2H_{δ}	$\mathrm{NHCH_{2}COOC_{2}H_{5}}$	44	200-204 (0.1)		$C_{20}H_{23}NO_4$. 10	70.77		4.39
49	$C_{\theta}H_{\delta}$	$C_2H_{\mathfrak{z}}$	NH(CH ₂)8N(CH ₈) ₂	8 3	55–56	Р	$C_{21}H_{28}N_2O_2$	74.08	8.29 8.	. 23	73.72	8.06	8.36
50	C_6H_6	C_2H_5	-N NCH	41	215-218 (0.15)		$C_{21}H_{36}N_{2}O_{2}$	74.52	7.74 8.	. 28	74.30	7,43	8.50
51	$C_6\Pi_5$	C_2H_6	-NH-\N	60	176-178 (HCl)	Et-E	$C_{21}H_{21}C^{\dagger}N_{2}O_{2}$	68.38	5.74 7.	60	68.62	5.82	7.95

 $[^]a$ B = benzene, E = ether, Ea = ethyl acetate, Et = ethanol, H = hexane, M = methanol, P = pentane, W = water. b Anal. Calcd: Cl, 9.41. Found: Cl, 9.48.