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Asymmetric alkynylide additions to carbonyls have emerged
as a useful tool in organic synthesis.[1] Several different
stoichiometric and catalytic versions of additions to aldehydes
have been documented for the preparation of secondary
propargylic alcohols in high enantiomeric purity.[2] By con-
trast, enantioselective alkynylation of ketones towards the
formation of tertiary alcohols has enjoyed only limited
success with respect to both scope and selectivity.[3] Unques-
tionably, the most prominent example of zinc-mediated
asymmetric alkynylation of ketones was described by Tan
and co-workers at Merck for the manufacture of efavirenz[4]

(Sustiva, Stocrin), a key drug for the treatment of HIV.[5a,b]

This landmark chemical process prescribes the use of
stoichiometric quantities of diethylzinc, metalated acetylene,
chiral amino alcohol ligand, and trifluoroethanol additive to
furnish the key intermediate (S)-2 in 99.3% ee and 95% yield
(Scheme 1).[5c] Herein, we disclose a catalytic, enantioselec-

tive process, which involves the use of a cocktail including
substoichiometric quantities of the ligand (1R,2S)-N-pyrroli-
dinylnorephedrine (4),[6] Et2Zn, and substoichiometric
amounts of the product (S)-2 at the outset of the reaction.[7]

The catalytic reaction benefits from the presence of product
as an autocatalyst, resulting in a more atom-economical route
to efavirenz in 79(67)% yield and 99.6(99.5%)% ee.[8]

Beyond the economic relevance, this process showcases the
first example that employs autocatalysis in the synthesis of a
pharmaceutical agent which may be conducted on large scale
(Scheme 2).[9]

We have been interested in the chemistry of terminal
acetylenes in catalytic, enantioselective synthesis.[2j–n] Because
of the global importance of efavirenz for human health, we
turned our attention to its synthesis. The current large-scale
production of the key intermediate (S)-2 proceeds through a
chiral zincate, requiring excess quantities of the chirality-
inducing ligand 4 (1.5 equiv), 1.2 equiv of Et2Zn, and
0.9 equiv of trifluoroethanol (Scheme 1).[10] We set out to
carefully examine this process with the aim of establishing a
cost-effective protocol that would employ substoichiometric
amounts of these components, namely a catalytic enantiose-
lective process.[11]

Given the regulatory and financial issues involved in
registering a new protocol for an existing drug, we set out to
craft a catalytic, enantioselective process that would parallel
the current stoichiometric one. We thus focused our efforts on
the screening of reaction parameters, such as base, temper-
ature, concentration, solvent polarity, order of addition of the
various components, and relative proportions of the compo-
nents. In our initial studies the most promising result was
achieved with 0.3 equiv of (1R,2S)-4, 0.24 equiv of Et2Zn,
0.18 equiv of CF3CH2OH, 0.8 equiv of LiOtBu as the base,
and 1.1 equiv of cyclopropyl acetylene 3. Under these
conditions the desired tertiary alkynol (S)-2 was formed
with 97.4% ee and 40.4 % yield, based on the HPLC analysis
of the reaction aliquot after 4 h at 23 8C. This outcome
suggested that the system might exhibit turnover, but further

Scheme 1. Current “stoichiometric” synthesis of (S)-2, a key intermedi-
ate in the synthesis of efavirenz.

Scheme 2. Enantioselective synthesis of efavirenz by means of the
autocatalytic formation of the key intermediate (S)-2.
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optimization was required. Extensive screening of a number
of parameters including achiral additives ((CF3)2CHOH,
CF3(CH3)CHOH, (CH3)3COH, C6H5CH(CF3)OH, tBuOH),
dialkylzinc reagents (Me2Zn, Ph2Zn), and bases for alkyne
deprotonation (LiOTMS, KOTMS, KOtBu, CsOH, Et3N,
pyridine, CF3CH2OLi, nBuLi) resulted in either poor yields or
low enantioselectivity, thus, forcing us to embark on the
examination of less obvious parameters. Analogous inves-
tigations of these parameters had been reported by Grabow-
ski for the addition of alkynyl Grignard reagents without any
notable success as well.[10]

The first systematic study on the effect of an enantiomer-
ically enriched product acting as a ligand in an intermediate
complex in an asymmetric reaction was carried out by Alberts
and Wynberg.[12, 13] Pioneering studies by Soai have high-
lighted important observations concerning autocatalysis in
enantioselective alkylzinc additions, involving the addition of
iPr2Zn to substituted 2-pyrimidine carboxaldehydes.[14] A key
lesson from this specific work is the ability of the reaction
product to effect its own synthesis in high enantiomeric purity.
Although the potential importance of this process to the
question of the origin of chirality has been considered and
scrutinized, its application in preparative chemistry and in
particular to the manufacture of a pharmacologically active
ingredient has, to the best of our knowledge, gone unreported.
Moreover, autocatalysis in the enantioselective alkynylation
of ketones has, to the best of our knowledge, not been
previously noted.

We embarked on a series of studies aimed at examining
autoinduction by the product in developing a catalytic,
enantioselective approach to (S)-2. Having product alkynol
(S)-2 in its enantiomerically pure form at our disposal, we
conducted a set of experiments which afforded promising
initial results. Thus, when 0.3 equiv of (1R,2S)-4, 0.24 equiv of
Et2Zn, and 0.18 equiv of (S)-2 were employed with nBuLi as
the base, the desired product was formed in 52 % yield and
86% ee after 18.5 h at room temperature (Table 1, entry 1).[15]

Next, we observed that the system was robust even when
subjected to heating[16] and that employing nHexLi instead of
nBuLi to effect alkyne deprotonation was beneficial (Table 1,
entry 2). The modest yield could be attributed to partial
dimerization of the substrate during the course of the
reaction.[17]

In a study by Cozzi et al. involving methyl alkynylzinc
additions to ketones, the carbonyl substrate itself was
implicated as a ligand that facilitates the zinc-mediated
addition of alkynes to the substrate,[18] thus implicating a
putative, competitive stereorandom background reaction. To
ensure a sustained low concentration of 1, it was added slowly
and simultaneously with nHexLi.[19] These conditions along
with heating proved optimal and led to further increase in the
yield (87%) and enantiomeric excess (90% ee) of the isolated
product (Table 1, entry 3). A larger-scale preparative experi-
ment (250 mmol) under otherwise identical conditions
afforded product in good yield and 99.6 % ee (Table 1,
entry 4).[20] Nearly the same product yield and enantiomeric
purity were observed with longer reaction time upon twofold
decrease in the amount of product autocatalyst (Table 1,
entry 5 versus entry 3). It is important and surprising to note

that in the absence of the external ligand (1R,2S)-4 the
product is formed as a racemate (Table 1, entry 6).[21] Thus the
autocatalytic effect in this process is rather special, requiring 4
as a second chiral component or ligand.

We decided to examine addition reactions of the
N-pivaloyl-protected derivative (S)-6 (Scheme 3). In the
first experiment, the addition of 3 to 5 mediated by
0.24 equiv of ligand 4 afforded product (S)-6 in 20 % ee
(Table 2, entry 1). Thus, in contrast to additions to 1, use of
ligand alone gives very poor conversion and asymmetric
induction. In a second set of investigations, when the addition
was carried with 0.24 equiv of added product as autocatalyst,

Table 1: Study of addition reactions of 3 to 1 (Scheme 2).

Entry 4 (S)-2 T t Product (S)-2
[mol%] [mol%] [8C] [h] yield [%][a] ee [%][b]

1[c,f ] 30 18 25 18.5 52(37)[h] 86(80)
2[c] 30 18 40 6.5 83(68)[h] 85(81)
3[c,k] 30 18 40 2 87(69)[g] 90(88)
4[c,d,k] 30 18 40 12 79(67)[l] 99.6(99.5)
5[c,k] 39 9 40 6 85(76)[g] 87(85)
6[e,k] – 24 25 1.5 81(61)[h] rac
7[c,i,k] 30 18 40 3 91(76) 39(67)[j]

[a] Yields after subtraction of the initially added product are given in
parentheses. [b] ee values were determined by HPLC with a Daicel
Chiralpak AD-H column, hexanes/iPrOH 85:15, 1 mLmin�1. Values
corrected for initially added (S)-2 ligand are given in parentheses (see
Ref. [15]). [c] Performed with (1R,2S)-4 unless otherwise stated, 2 mmol
scale, THF(major component)/Tol/hexanes, 0.24 equiv of Et2Zn,
0.9 equiv of nHexLi, 2 equiv of 3. [d] 250 mmol scale, identical to
conditions in [c]. [e] 2 mmol scale, toluene as a major solvent
component (see Ref. [21a]), 0.48 equiv of Et2Zn, 1 equiv of nHexLi,
2 equiv of 3. [f ] 2 equiv of nBuLi as a base. [g] Yield of isolated product
after purification by chromatography. [h] Product was not isolated; yield
was calculated by HPLC analysis of the reaction aliquot. [i] Performed
with (1S,2R)-4. [j] ee of (R)-2. [k] Slow simultaneous addition of nHexLi
and aminoketone 1 to the reaction mixture. [l] Yield of isolated product
after crystallization.[20]

Scheme 3. Addition of alkyne 3 to N-pivaloyl-protected 5.
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but no ligand 4, the alcohol adduct (S)-6 was obtained in 58%
yield and 76% ee (Table 2, entry 2).[22] This finding is intrigu-
ing, because, unlike (S)-2, the product as a chiral controlling
group is dominant over ligand 4 in promoting the reaction and
dictating the configuration of the newly formed product (S)-6
(compare with Table 1, entry 6). In a third experiment, when
the addition was conducted in the presence of both ligand 4
and the autocatalyst product ((S)-6/(1R,2S)-4 0.3:0.18), (S)-6
adduct was isolated in 51 % yield and 91 % ee (Table 2,
entry 3).[23]

Finally, a fourth experiment was carried out to examine
whether there was a matched and mismatched pair of
combinations involving (1S,2R)-4, (1R,2S)-4, and (S)-6.
Surprisingly, the analysis of the reactions indicated enantio-
selective formation of (S)-6 regardless of the amino alcohol
ligand employed (Table 2, entries 3 and 4).[24] This dominant
effect of product as an autocatalyst which dictates the
absolute configuration of the adduct 6 was not detected in
the case of (S)-2 (Table 1, entry 7). Consequently, the config-
uration of the product autocatalyst is crucial for asymmetric
induction in this transformation.[25] Although the enantiose-
lectivity and yield were only moderate, this system exhibits
the very first example of an asymmetric autocatalytic
alkynylation of a ketone, where the product constitutes the
only source of chiral catalyst (Table 2, entry 2).

The origin of the enantiofacial bias in asymmetric zinc
alkylation reactions mediated by rigid bidentate b-amino-
alcohols is well described by the Noyori–Kitamura five-ring
chelate model.[26] The enantioselective addition of lithium
acetylide–ephedrate to the PMB-protected aminoketone 1
(PMB = p-methoxybenzyl) was accounted for by the active
2:2 cubic tetramer, which was well characterized by spectro-
scopic and structural methods.[27] By contrast, reliable mech-
anistic studies on 1,2-alkynylzinc additions, in particular
catalytic reactions, are lacking. We have obtained a crystal
structure of a complex formed by Et2Zn, 4, and 6, which is
competent as a catalyst, albeit with reduced selectivity, and is
instructive to examine (see the Supporting Information).
However, at present a detailed construct to rationalize the
autocatalytic effects we observed must await additional in-
depth mechanistic studies. Nonetheless, the phenomenolog-

ical autocatalytic effect of the product can become beneficial
in the catalytic, enantioselective synthesis of important
pharmaceutical intermediates. The possibility of the practical
application of this autocatalysis concept, which is otherwise
largely of academic significance, is to the best of our
knowledge unprecedented.

In summary, we have documented a catalytic enantiose-
lective process for the production of a key precursor to
efavirenz. Key to the development was the use of the product
as an inherent part of the catalytic system. This novel
approach towards zinc acetylide addition to ketones expands
the arsenal of existing autocatalytic transformations and also
poses general challenging questions about the product�s role
in asymmetric reactions. In a manner that is complementary
to Soai�s involving autocatalysis, the strategy described herein
has demonstrated the conversion of a catalytic, enantioselec-
tive transformation, which is poorly selective even in the
presence of an external chiral catalyst, into a highly selective
process. It also provides an example wherein the presence of
the product as well as a second chiral catalyst can work in
synergy to generate a catalytic and enantioselective reaction
process. Following the strategy outlined, we believe the
manufacturing cost of efavirenz could be substantially
reduced in comparison to this of the existing stoichiometric
process. There has been considerable public debate on the
affordability of medicines; in this respect the approach we
describe may provide wider access to therapy to patients
worldwide. Additionally, we believe that this is fertile
territory for future explorations in the field.

Experimental Section
General experimental procedure and characterization of the prop-
argylic alcohols, as well as spectroscopic data of the discussed
compounds can be found in the Supporting Information. CCDC-
652045 and 652046 contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
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[22] In Ref. [13a–f] the product is described as an inherent (yet, not
exclusive) part of a catalytic species. However, Soai�s reports
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leading to the formation of secondary alcohols and asymmetric
Mannich reactions (Ref. [13g]) are examples where the product
is the only (and sufficient) chiral inductor.

[23] As the reaction failed to proceed to completion, thus unreacted
starting material could be retrieved in all experiments.

[24] Soai et al. have described similar observations related to their
autocatalytic system involving aldehyde additions: a mixture of
two competing pro-S and pro-R ligands afforded highly enan-
tioenriched product, implying one ligand far outweighs another
in its ability of enantiofacial control: K. Soai, I. Sato, F. Lutz,
Org. Lett. 2004, 6, 1613 – 1616.

[25] It is noteworthy that PMB-protected 1, submitted to the same
transformation (i.e., (1R,2S)-4 and PMB-protected (S)-2 as
catalysts), exhibited no enantiofacial differentiation, affording
completely racemic product in nearly quantitative yield (deter-
mined by GCMS on a chiral stationary phase). This finding
differs radically from the highly selective lithium acetylide
alkynylation of PMB-protected 1, performed with (1R,2S)-4—
the key step in the lithium-assisted manufacture of efavirenz (see
Ref. [27a,b]).
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