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ABSTRACT: This paper describes the one-electron intercon-
versions of isolable NiIII and NiIV complexes through their
reactions with carbon-centered radicals (R•). First, model NiIII

complexes are shown to react with alkyl and aryl radicals to afford
NiIV products. Preliminary mechanistic studies implicate a pathway involving direct addition of a carbon-centered radical to the
NiIII center. This is directly analogous to the known reactivity of NiII complexes with R•, a step that is commonly implicated in
catalysis. Second, a NiIV−CH3 complex is shown to react with aryl and alkyl radicals to afford C−C bonds via a proposed SH2-
type mechanism. This pathway is leveraged to enable challenging H3C−CF3 bond formation under mild conditions. Overall,
these investigations suggest that NiII/III/IV sequences may be viable redox pathways in high-oxidation-state nickel catalysis.

■ INTRODUCTION

Nickel-catalyzed cross-coupling reactions have emerged as
powerful synthetic methods for the mild and selective
construction of carbon−carbon and carbon−heteroatom
bonds.1 The vast majority of these transformations are proposed
to involve organometallic NiII and/or NiIII intermediates.1b−f,2

Higher oxidation state NiIV species were historically believed to
be inaccessible in these types of catalytic transformations.1,2

However, recent studies have shown that organonickel(IV)
complexes can be formed at or below room temperature using
common oxidants.3 As such, there is increasing interest in
understanding the generation and reactivity of such NiIV

complexes in order to interrogate their potential role(s) in
catalysis.4

To date, studies of organometallic NiIV complexes have largely
focused on two-electron redox processes that form and/or
consume these species.3 As one example, our group has
demonstrated that the net two-electron oxidative addition of
diaryliodonium salts to NiII complex I affords NiIV intermediates
of general structure II (Scheme 1a, i).3d Furthermore, II was
shown to undergo two-electron C−C bond-forming reductive
elimination to afford PhCF3 andNi

II product III (Scheme 1a, ii).
However, a hallmark of nickel catalysis is the accessibility of one-
electron redox events, particularly those involving carbon-
centered radicals.1b−f,2 For instance, one of the most common
elementary steps in Ni-catalyzed cross-coupling reactions
involves the formation of a NiIII−alkyl intermediate via the
addition of a carbon-centered radical to a NiII center.1c,2 Thus,
an important outstanding question for the field is whether NiIV

intermediates can be formed and/or consumed via analogous
single-electron reactions with carbon-centered radicals.
As shown in Scheme 1b, we identified two such reactions for

investigation: (i) the addition of carbon-centered radicals to
NiIII intermediates to formNiIV products and (ii) the reaction of
organometallic NiIV complexes with carbon-centered radicals to
afford C−C coupling products. Herein, we demonstrate the

feasibility of both of these transformations using tris(pyrazolyl)-
borate-ligated Ni model complexes in combination with
thermally generated carbon-centered radicals. Furthermore,
we show that the latter pathway enables challenging carbon−
carbon coupling reactions that are not feasible via conventional
two-electron inner-sphere C−C bond-forming reductive elim-
ination pathways at Ni.

■ RESULTS AND DISCUSSION
Accessing NiIV via Carbon-Centered Radical Addition

to NiIII Complexes. Recent reports have shown that organo-
metallic NiIV complexes can be prepared via the net two-electron
oxidation of NiII precursors with oxidants including diary-
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Scheme 1. (a) Previous Work, Two-Electron Redox
Processes to Form/Consume Organometallic NiIV

Complexes; (b) This Work, One-Electron Redox Processes
Involving Carbon-Centered Radicals That Form/Consume
Organometallic NiIV Complexes
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liodonium salts, aryl diazonium salts, and CF3
+, O+, Cl+, and F+

reagents (for example, Scheme 1a, i).3,5 These transformations
have close analogies to sequences that form high-valent
palladium and platinum species.6 In contrast, the generation of
NiIV intermediates via the reaction of NiIII precursors with
carbon-centered radicals has not been demonstrated. This is of
particular interest because both NiIII complexes and carbon-
centered radicals are common intermediates in Ni-catalyzed
cross-coupling. Hence, this pathway, if feasible, could potentially
be leveraged in catalytic transformations.
To probe the feasibility of this transformation, we chose the

NiIII complex TpNiIII(CF3)2(MeCN) (1, eq 1) as a model
system because our previous work has shown that it is stable and
isolable from the 1e− oxidation of [TpNiII(CF3)2]

− with
AgBF4.

7 ,8 Additionally, the relevant NiIV product
TpNiIV(CF3)2(Ph) (a close analogue of 2, eq 1) has been
independently formed from the reaction of [TpNiII(CF3)2]

−

with diaryliodonium salts.3d We targeted a method for
generating carbon-centered radicals that is compatible with
both the organometallic NiIII starting material and the
organometallic NiIV product. The most common carbon-
centered radical-forming reactions involve thermolysis, photol-
ysis, reduction, or oxidation of an appropriate precursor.9

However, high-valent Ni complexes like 1 and 2 generally
decompose rapidly at high temperatures, as well as in the
presence of light and/or reductants.3d,5 On the basis of these
considerations, we selected diacyl peroxides [(RCOO)2] as the
radical source. These reagents are known to generate carbon-
centered radicals under relatively mild conditions (heating at
≤95 °C),10 without the requirement for light or reductants.11

We first studied the reaction of 1 with bis(4-fluorobenzoyl)-
peroxide (A), which has a t1/2 of∼1 h at 90 °C (eq 1).10 Heating
the reactionmixture for 15min at 95 °C resulted in the complete
consumption of 112 along with the formation of 2 in a maximum
yield of ∼3% (after 6 min). This result suggests the feasibility of
the proposed radical addition reaction. However, attempts to
improve the yield of 2 by changing the temperature,
concentration, or solvent were unsuccessful. A control reaction
showed that 1 is unstable at 95 °C, even in the absence of
peroxide. Heating at 95 °C for 15 min resulted in complete
consumption of 1 and the formation of a mixture of products
including Tp2Ni

II and HCF3. This suggests that the low yield of
2 is at least partially due to the instability of the NiIII starting
material.
Vicic has reported that NiIII complexes bearing a perfluor-

onickelocyclopentane ligand are significantly more stable than
their trifluoromethyl analogues.13 As such, we next targeted the
analogous reaction of 3. Complex 3 was synthesized via the
reaction of [TpNiII(C4F8)]

− with 1 equiv of AgBF4 and was
isolated in 57% yield after purification by chromatography on
silica gel (Figure 1A). In contrast to 1, elemental analysis and X-
ray crystallography indicate that this is a five-coordinate NiIII

complex. This is further confirmed by EPR spectroscopic

analysis (at 100 K in a toluene glass), which shows hyperfine
coupling to a single nitrogen.
As predicted, 3 exhibits significantly enhanced thermal

stability relative to 1. Minimal decomposition was observed
upon heating a CD3NO2 solution of 3 for 15 min at 95 °C.14

This suggests that complex 3 should be more compatible with
the thermolytic conditions required for R• generation from A.
Indeed, the treatment of 3with 18 equiv ofA at 95 °C for 19 min
produced TpNi(C4F8)(4-F-C6H4) (4) in 61% yield, as
determined by 19F NMR spectroscopy (eq 2).15 Product 4
was purified by column chromatography on silica gel and was
isolated in 31% yield as a light orange solid. This octahedral NiIV

complex was characterized by X-ray crystallography (Figure 2a),
elemental analysis, and 1H, 19F, and 13C NMR spectroscopy.

We also examined the reaction of 3 with bis(4-
phenylbutyryl)peroxide (B).16 The treatment of 3 with 10
equiv of B for 6 min at 85 °C afforded the NiIV alkyl product 5 in
49% yield, as determined by 19F NMR spectroscopy (eq 3).17

Product 5 was isolated in 17% yield after purification by column
chromatography on silica gel, and it was characterized via 1H,
11B, 13C, and 19F NMR spectroscopy as well as by X-ray
crystallography (Figure 2b).18

Figure 1. (a) Synthesis of complex 3. (b) Experimental (blue) and
simulated (red) EPR spectra of 3. Gx = 2.28; Gy = 2.22; Gz = 2.01; AN =
22 G. (c) X-ray crystal structure of 3. Selected bond lengths (Å): Ni1−
N3, 2.0314(14); Ni1−N1, 1.9917(14); Ni1−N5, 1.9692(14); Ni1−
C13, 1.976; Ni1−C13, 1.9420(17). Thermal ellipsoids are drawn at
50% probability.
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We envision at least two possible pathways for the conversion
of 3 to 4/5. The first involves the decarboxylative formation of
R• and subsequent addition of this aryl/alkyl radical to 3
(Scheme 2, a). The second involves the addition of initially
generated RCO2• to 3 to form Int-1 and subsequent
decarboxylation at this NiIV carboxylate to form 4/5 (Scheme
2, b). To interrogate this latter possibility, we independently
synthesized the NiIV carboxylate complex Int-1 (with R = p-
FC6H4).

19 Int-1 was characterized by 1H and 19F NMR
spectroscopy (where it exhibits resonances that are clearly
distinct from those of 4) as well as by X-ray crystallography
(Figure 2c).
With characterization data for Int-1 in hand, we reexamined

the reaction between 3 and A. The crude 19F NMR spectrum of
this transformation shows that Int-1 is formed in approximately
9% yield after 5 min, after which point it rapidly decays.
However, this experiment does not establish whether Int-1 is an
intermediate or just a side product formed during this
transformation. To distinguish these possibilities, a CD3NO2
solution of Int-1 was heated at 95 °C for 20 min (the conditions
for the reaction between 3 and A to form 4). This resulted in
67% conversion of Int-1 to a mixture of products (predom-
inantly 4-fluorobenzoic acid in 55% yield, as determined by 19F
NMR spectroscopy).20 However, no trace of 4 was detected

under these conditions (eq 4). This strongly suggests that
pathway b is not operating in this system.

If pathway a were operating, then analogous reactivity would
be expected using a different source of R•. The combination of
aryl diazonium salts and ferrocene is well-known as an
alternative route to aryl radicals.21 As such, we next explored
the reaction of NiIII complex 3 with 2 equiv of 4-
fluorophenyldiazonium tetrafluoroborate in the presence of 2
equiv of ferrocene (eq 5). Notably, complex 3 does not react
with 4-fluorophenyldiazonium tetrafluoroborate over the course
of an hour at room temperature. However, upon the addition of
ferrocene, NiIV-aryl product 4 was formed in 72% yield after just
20 min.22

To rule out nonradical pathways, we also conducted radical
scavenger experiments using the oxidatively stable radical trap β-
nitrostyrene.23 We initially confirmed that this reagent does not
react with 3 over the time scale of the experiments. When the
reaction of 3 with peroxide A was performed in the presence of
β-nitrostyrene (1 equiv relative to A), the yield of 4 dropped
dramatically, from 61 to 19%. Similar results were observed
using peroxide B, with the yield of 5 decreasing from 49 to 14%.
This is consistent with the formation (and competitive trapping)
of alkyl radicals in the conversion of 3 to 4/5. Collectively, the
experiments outlined above are most consistent with pathway a

Figure 2. (a) X-ray crystal structure of 4. Selected bond lengths (A) and
angles of 4: Ni1−N1, 2.089(2); Ni1−N3, 1.980(2); Ni1−C1,
2.031(2); Ni1−C10, 1.978(2); Ni1−C7, 1.967(2); N1−Ni1−C1,
169.31(9)°. (b) X-ray crystal structure of 5. Selected bond lengths (Å)
and angles of 5: Ni1−N3, 2.1033(13); Ni1−N1, 1.9966(13); Ni1−N5,
1.990(2); Ni1−C13, 1.9787(15); Ni1−C10, 1.9860(16); Ni1−C14,
2.0581(15); N3−Ni1−C14, 171.76(6)°. Thermal ellipsoids are drawn
at 50% probability, and hydrogen atoms are omitted for clarity. (c) X-
ray crystal structure of Int-1. Selected bond lengths (Å) and angles of
Int-1: Ni1−N5, 1.945(4); Ni1−Ni3, 2.012(4); Ni1−N1, 2.006(4);
Ni1−O, 1.862(3); Ni1−C20, 1.999(8); Ni1−C17, 2.010(8); N5−
Ni1−O1, 178.02(14)°. Thermal ellipsoids are drawn at 50%
probability, and hydrogen atoms and disorder are omitted for clarity.

Scheme 2. Possible Pathways for Conversion of 3 to 4/5
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in Scheme 2, involving thermal O−O bond scission,
decarboxylation to form R•, and finally capture of R• at 3 to
generate NiIV product 4 or 5.
One-Electron Carbon−Carbon Coupling Reactions at

NiIV. We next sought to evaluate the reactivity of NiIV−alkyl
complexes with carbon-centered radicals to generate C−C
bonds. Such pathways have precedent in the context of alkyl−
CoIII systems24,25 but seldom are considered in high-valent Ni
catalysis.4 In particular, methyl−CoIII corrinoid cofactors are
well-known to react with exogeneous R• to afford R−CH3 via an
SH2-type pathway (Scheme 3).24

To initially probe the viability of this transformation at NiIV,
we evaluated the reactivity of several different NiIV−alkyl
complexes with R• (generated from the thermolysis of A or B).
These studies revealed that the NiIV−CH3 complex 6 exhibits
the best balance between reactivity with R•, thermal stability,
and synthetic accessibility (Scheme 4). Notably, this is similar to

the Co systems, in which the methyl variants are typically
thermally stable yet highly reactive with carbon-centered
radicals.24 As such, complex 6 was selected as the model system
for more detailed studies.26

Heating a solution of 6with 3 equiv of peroxide A at 90 °C for
1 h resulted in the formation of 4-fluorotoluene in 65% yield
along with 5% of 4,4′-difluorobiphenyl, as determined by 19F
NMR spectroscopic analysis (Scheme 4).27,28 Notably, 44% ofA
(or ∼1.3 equiv relative to 6) was consumed in this reaction.
Similarly, the reaction of 6 with 3 equiv of B at 80 °C for 1 h
afforded n-butyl benzene in 78% yield, as determined by 1H
NMR spectroscopy. Notably, 67% of B (or ∼2 equiv relative to
6) was consumed in this reaction. In this case, the radical
homocoupling product 1,6-diphenylhexane was also detected in

25% yield (Scheme 4). However, neither methane nor ethane
was observed in either reaction.
The Ni product of the reaction between 6 and R• is expected

to be TpNiIII(CF3)2. However, TpNi
III(CF3)2 is unstable at

temperatures ≥80 °C. As such, the reactions with A (conducted
at 90 °C) and B (conducted at 80 °C) afforded complex
mixtures of Ni byproducts that proved challenging to character-
ize.29 Analysis of these crudemixtures by 11BNMR spectroscopy
revealed the presence of Tp2Ni.

30

Scheme 5 shows three pathways that could account for the
formation of R−CH3 in this reaction.31 The first (Scheme 5, i)

involves preequilibrium dissociation of an arm of the Tp ligand
followed by radical addition and subsequent concerted inner-
sphere C−C coupling. Notably, this radical addition/concerted
reductive elimination sequence is frequently proposed in
reactions of carbon-centered radicals with lower oxidation
state coordinatively unsaturated Ni centers.1c,2 However, it is
highly unlikely in the current system, because it requires the
formation of a nickel intermediate with a formal +5 oxidation
state. The second pathway (Scheme 5, ii) involves outer-sphere
radical coupling via a radical substitution (SH2) pathway.32

Here, R• reacts directly with the methyl ligand via a transition
state of general structureTS-1. This pathway is analogous to that
proposed for the reaction of methyl−CoIII corrinoid cofactors
with R• (Scheme 3). Finally, this transformation could proceed
via the heterodimerization of R• and methyl radicals formed
through spontaneous NiIV−CH3 homolysis (Scheme 5, iii).
The product distribution of these reactions provides initial

evidence against the homolysis/radical heterodimerization
pathway (mechanism iii). Unstabilized carbon-centered radicals
are known to dimerize with low selectivity and at near diffusion-
limited rates.33 However, the reaction of 6 with A and B forms
the cross-coupled product H3C−R in much higher yield (65 and
78%, respectively) than R−R or H3C−CH3 (5 and 25% yield,
respectively).34,35

To further interrogate the viability of mechanism iii, we
monitored the thermolysis of 6 in the presence of 5 equiv of the

Scheme 3. Reaction of CoIII−CH3 Adducts with R• to Form
R−CH3

Scheme 4. Reaction of Carbon-Centered Radicals with 6
(Yields Based on 6 as the Limiting Reagent)

Scheme 5. Potential Mechanisms for C−C Coupling
Reactions between 6 and R•
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radical scavenger β-nitrostyrene. If mechanism iii were
operating, any free H3C• that is generated should be rapidly
captured by β-nitrostyrene, resulting in fast decomposition of 6.
In contrast, in the event of mechanism ii, 6 should be stable in
the presence of this reagent. As shown in Figure 3, heating a

solution of 6 in the presence of β-nitrostyrene had minimal
impact on the decay of 6. In marked contrast, the addition of A
or B resulted in rapid loss of 6 (with concomitant formation of
the respective C−C coupled product). Collectively, the
experiments outlined above are most consistent with mecha-
nism ii.
Mechanism ii is fundamentally different than traditional 2e−

inner-sphere C−C bond-forming reductive elimination reac-
tions. As such, we hypothesized that it might enable the
formation of C(sp3)−CF3 bonds, which are challenging to forge
via direct inner-sphere pathways.3c,7,36 For example, heating 6
for 18 h at 100 °C in MeCN yields <5% of H3C−CF3. Instead,
other decomposition pathways outcompete H3C−CF3 cou-
pling.37 This result is consistent with the known difficulties
associated with direct inner-sphere C(sp3)−CF3 coupling.
However, in contrast, the treatment of 6 with 2.5 equiv of

bis(trifluoroacetyl)peroxide (C) at just 45 °C for 90 min
resulted in rapid decay of the NiIV starting material along with
the concomitant formation of H3C−CF3 and TpNiIV(CF3)3 7 in
74 and 63% yield, respectively (eq 6).38 Control reactions show
that H3C−CF3 is not formed at this temperature unless both 6
and C are present. This represents a rare example of metal-
mediated C(sp3)−CF3 coupling.36,39 In our system, this
transformation appears to be enabled by the accessibility of a
1e− outer-sphere pathway.

■ SUMMARY AND CONCLUSIONS
In summary, this Article describes the first detailed study of the
reactivity of high-valent organonickel complexes with carbon-
centered radicals (R•). These studies demonstrate that NiIV

compounds can be formed from the reaction of NiIII complexes

with R•. They also reveal that NiIV−methyl complexes can
engage R• to form various types of C−C bonds. Preliminary
mechanistic studies are most consistent with a pathway
involving an SH2-type reaction of R• with the NiIV−CH3 ligand.
In contrast, inner-sphere coupling and radical heterodimeriza-
tion mechanisms are deemed unlikely. This unconventional C−
C bond-forming pathway was found to enable C(sp3)−CF3
coupling, a reaction that is highly challenging through traditional
inner-sphere reductive elimination at Ni centers. Overall, these
investigations suggest that, with the appropriate choice of ligand,
NiII/III/IV sequences involving carbon-centered radicals could be
targeted for the formation of challenging bonds. Future work in
our laboratory will seek to extend these insights to the
development of new catalytic methods.
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