SUPPRESSION OF THE CONVERSION OF $3-\underline{t}$ -BUTYL-1-METHYL-1-NITROSOTHIOUREA TO $3-\underline{t}$ -BUTYL-1-METHYLUREA BY β -CYCLODEXTRIN UNDER ACIDIC CONDITIONS

Masayoshi ISOBE Department of Chemistry, Saitama Medical School, Moroyama, Saitama 350-04

The denitrosation of 3-<u>t</u>-butyl-1-methyl-1-nitrosothiourea($\frac{1}{\sqrt{2}}$) was retarded by β -, and γ -cyclodextrins(CDs) at pH 4.70. Decomposition of $\frac{1}{\sqrt{2}}$ in the presence of β -CD produced selectively 3-<u>t</u>-butyl-1-methylthiourea($\frac{1}{\sqrt{2}}$), which was remarkably different from the product ratio in the absence of β -CD. These results may be caused by both the protective and the microsolvent effect of β -CD.

Cyclodextrins(CDs) can form a great variety of inclusion complexes with substrates that range from hydrophobic to ionic in charactor, with subsequent reactivity changes. The catalytic actions of CD as a model of enzyme have been interpreted from the standpoint of the nucleophilic catalysis, the microsolvent effect, and/or the conformational effect.^{1,2)} There are few reports in which the effects of CDs on the product ratio are ascribed to the protective effect of CDs against the attack of reagents. The decomposition of 3-t-butyl-1-methyl-1-nitrosothiourea(1)³⁾ in acetate buffer solution(pH 4.6) was found to produce a mixture of 3-t-butyl-1-methylthiourea(1a) and 3-t-butyl-1-methylurea(1b)(1a:1b = 37:63)(Scheme 2), which was partly analogous to the decomposition product of 1,3-dipropyl-1nitrosothiourea in acetone-HCl(1 mol dm⁻³) solution reported by Lown and Chauhan.⁴⁾ In this report the effect of CDs on the conversion of 1 to 1a or 1b has been studied

Pseudo first-order rate constants for the denitrosation of 1 were measured in acetate buffer solution (pH 4.70 or 5.63) in the presence of α -, β -, or γ -CD(1-15 mM) at 37 °C.⁵) The results are exhibited in Fig. 1. The denitrosation of 1 was retarded by the formation of the inclusion complexes with β -, or γ -CD and that of 1 in the presence of α -CD showed almost the same rate constants with that in the absence of α -CD. Protonation on N₁ position is necessary prior to the rearrangement of nitroso group. The suppression of protonation on N₁ and/or of rearrangement of nitroso group by β -, or γ -CD are considerd as the reason for the retardation. As for α -CD, it has been reported that the bulky <u>t</u>-butyl group is located outside the CD ring in the complex of <u>p-t</u>-butylphenolate and α -CD.⁶)

In order to evaluate the dissociation constant(K_d) and the catalyzed rate constant(k_c) for the inclusion complex between CD and 1, the effect of the CD

concentration on the rate constant was examined by use of the Eadie-type plot.⁷⁾ On the assumption of the formation of the 1:1 CD-1 complex, the observed first-order rate constant(k
obsd) may be represented by Eq. 1 if the concentration of the CD is much higher than that of 1: where $[CD]_0$ is the total concentration of the CD and k is the uncatalyzed rate constant, respectively. $k_{obsd} - k_{un} = -K_d (k_{obsd} - k_{un}) / [CD]_0 + k_c - k_{un}$ Figure 2(A) shows the plots of $(k_{obsd} - k_{un})$ (1)vs. $(k_{obsd}-k_{un})/[CD]_0$ for the denitrosation of 1 in the presence of β -CD. The plot was linear with a slope(= K_d) of (1.24±0.04)X10⁻³ M and with an intercept $(k_c - k_{un})$ of $(-15.87 \pm$ 0.03)X10⁻⁴s⁻¹. Similar linear plots(Fig.2(B)) were obtained for the reaction in the presence of γ -CD, but no such a plot was obtained in the presence of α -CD indicating that 1 may not sufficiently be included in the cavity of α -CD. The K_d and k_c values determined are summarized in Table 1. As anticipated, the K_d value for β -CD was much smaller than that for γ -CD.

Fig. 1. Effects of cyclodextrins on the denitrosation rate constants of 1; $[\frac{1}{\sqrt{2}}] = 8.28 \times 10^{-5} \text{ M}, \ \mu = 0.2 (\text{NaCl}).$

$constant(k_c)$	of the cyclodextrin-	$\frac{1}{2}$ complex at $\frac{3}{2}$ (pH 4.70)		
Cyclodextrin	ĸ _d ∕mM	$k_{c} \times 10^{4} / s^{-1}$		
α				
β	1.24 ± 0.04	3.24 <u>+</u> 0.10		
Υ	16.1 <u>+</u> 0.4	1.36 <u>+</u> 0.03		

Table 1. The dissociation constant(K_d) and the catalyzed rate constant(k_c) of the cyclodextrin-1 complex at 37 °C(pH 4.70

To examine the effect of α -, β -, or γ -CD on the conversion of $\frac{1}{4}$ to $\frac{1}{48}$ or $\frac{1}{46}$, the product analysis in the presence of α -, β -, or γ -CD were performed and the decomposition products were analyzed by the use of ¹H NMR.⁸) In addition, to know the effect of oxygen or sodium nitrite on the conversion of $\frac{1}{4}$ the product analysis under nitrogen atmosphere or with the addition of sodium nitrite under nitrogen atmosphere was also performed. The results were shown in Table 2 with the per cent of $\frac{1}{4}$ bound at the different cyclodextrin concentrations. These results may be caused by the different protection of protonated intermediate of $\frac{1}{4}$ due to inclusion in the cavity of α -, β -, or γ -CD against the attack of nitrous acid formed by oxygen (Scheme 1)⁹) and they suggest that it is almost impossible for $\frac{1}{4}$ to be converted to $\frac{1}{40}$ in the cavity of β -CD but it is possible in the larger cavity of γ -CD to a small extent or outside the ring of α -CD. Product ratio of $\frac{1}{40}$ decreased and that of $\frac{1}{40}$ increased with the increase in the concentration of β -CD(Table 2). The similar protective effect against a reagent by β -CD has been observed in the reaction of

vitamine K analogues against the attack of hydrogen peroxide in the presence of β -CD.¹⁰⁾ Moreover, decomposition of 1 in 50% ethylene glycol-acetate buffer(pH 4.60) produced predominantly 1a. This result suggests that the microsolvent effect of cyclodextrin may be affecting the product ratio by

nitrogen atmosphere. d) 50% (vol%).

Fig. 2. The plots of $(k_{obsd}-k_{un})$ vs. $(k_{obsd}-k_{un})/$ [CD]₀ for the denitrosation of 1 in the presence of β -CD((A)) or γ -CD((B)).

depressing the approach of the nitrous acid into the apolar cavity which possesses the character of space alkalinity¹¹⁾ or topochemical base.¹²⁾

In conclusion, the conversion of $\frac{1}{2}$ to $\frac{1}{20}$ was most suppressed by β -CD among those three CDs leading to produce selectively $\frac{1}{20}$ (Scheme 2).

Catalyst	$\frac{\text{Concentration}}{10^{-3} \text{ mol } \text{dm}^{-3}}$	Product ratio, la : lb	Yield/% la lb	* 1 bound
None None(N ₂) ^{b)} None(N ₂ ,NaNO ₂) ^{c)}		37 : 63 83 : 17 50 : 50	24 40 22.5 4.5 37 37	
α-CD	5.70	36 : 64	29 52	-
β-CD	2.85 5.70 8.55	69 : 31 87 : 13 82 : 18	50 22 56 8 60 13	37 63 77
γ−CD	5.70	66 : 34	51 26	22
Sucrose	20.0	42:58	28 38	-
Ethylene ⁴⁷ glycol		77 : 23	60 18	-

a)Acetate buffer(pH 4.60), μ = 0.2(NaCl). [1] = 5.70 X 10⁻³mol dm⁻³. b)Under nitrogen atmosphere. c)With sodium nitrite(an equimolar amount with 1) under

Table 2. Decomposition product ratio(%) of 1 under acidic conditions^{a)}

Scheme 2.

The author wishes to thank Professor Kazuo Nagamatsu and Dr. Kazuyuki Yano at Saitama Medical School for their helpful comments and useful discussions.

References

- 1) D. W. Griffiths and M. L. Bender, Adv. Catal., 23, 209(1973).
- M. L. Bender and M. Komiyama, "Cyclodextrin Chemistry," Springer-Verlag, Berlin(1978).
- 3) 1: Found: C, 41.07; H, 7.46; N, 23.92; S, 18.39%. Calcd for $C_6H_{13}N_3OS$: C, 41.12; H, 7.48; N, 23.98; S, 18.30%.
- 4) J. W. Lown and S. M. S. Chauhan, J. Org. Chem., <u>48</u>, 3901(1983).
- 5) 20 μ l of 1(0.87 mg/0.4 ml-MeOH) in the acetate buffer solution(3 ml) in a thermostated UV cell, the progress of the reaction was monitored spectrophoto-metrically by following the disappearance of the absorption maximum at 266-272 nm.
- 6) J. P. Behr and J. M. Lehn, J. Am. Chem. Soc., <u>98</u>, 1743(1976).
- 7) G. S. Eadie, J. Biol. Chem., <u>146</u>, 85(1942).
- 8) A solution of $\frac{1}{2}(10 \text{ mg}, 0.057 \text{ mmol})$ in 0.5 ml of MeOH was added to 10 ml of acetate buffer solution(pH 4.6, 0.05 M, μ =0.2(NaCl)) containing β -CD(64.8 mg, 0.057 mmol) and stirred for 1 h at 37 °C. After cooling, the contents were extracted with chloroform(10 ml X 4). The combined extracts were washed with saturated NaCl solution, dried(MgSO₄), and evaporated to give a white solid (5.2 mg, 64%, $\frac{1}{10}$: $\frac{1}{10}$ = 87:13 by $\frac{1}{14}$ NMR analysis comparing the integrated value of the peak of N-CH₃). $\frac{1}{12}$: NMR(CDCl₃) δ 6.14(br, 2H, NH), $\frac{3.02}{2}$ (d, 3H, J=4.8 Hz, N-CH₃), 1.42(s, 9H, -C(CH₃)₃); $\frac{1}{10}$: NMR(CDCl₃) δ 5.21(br, 1H, NH), 5.01(br, 1H, NH), $\frac{2.65}{2}$ (d, 3H, J=4.8 Hz, N-CH₃), 1.30(s, 9H, -C(CH₃)₃).
- 9) D. L. H. Williams, J. Chem. Soc., Perkin Trans. 2, <u>1977</u>, 128.
- 10) I. Tabushi, K. Yamamura, K. Fujita, and H. Kawakubo, J. Am. Chem. Soc., <u>101</u>, 1019(1979).
- 11) F. Cramer, Ann. Chem., 579, 17(1953).
- 12) J. Szejtli and E. Bánky-Előd, Acta Chim. Acad. Sci. Hung., 91, 67(1976).

(Received October 16, 1984)